先看题干,这是一道比较简单的题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:输入:n = 7
输出:21
示例 3:输入:n = 0
输出:1
而且该题比较容易看出来这是一道动态规划的题目,
说白了就是可以演化成公式:f(n)=f(n-1)+f(n-2),是不是和斐波那契数列的公式很相似呢?
确实二者也有着异曲同工之妙,但是二者也有不同的地方就是,
这个题目考虑到实际情况:
n=0的时候,就是说小青蛙跳0阶台阶的时候,有多少种方法,当然,题目的实例也很明显,
n=0,输出1,为的是满足f(0)+f(1)=f(2)这样,
也确实在现实中理解可以理解为,我是小青蛙,呱呱呱,跳0阶台阶,我都不用动,不用动就是我的方法,只有一种,(我是这么理解的,你要理解为1也行,但是题目规定了该实例)
接着我就想到了动态规划,这个问题的公式为
f(n)=f(n-1)+f(n-2)
为什么呢,
可以理解为n阶台阶,最后一步有两种走法,1步或者2步,
如果题目规定是可以走1,2,4步呢,那公式就优化为f(n)=f(n-1)+f(n-2)+f(n-4)
那循环当然也会相应优化,
然后我看了以下题目的官方解,可能对于我来说,或者一些像我一样的小白,不好理解
我比较喜欢用sum来作为最后的返回结果,所以我的代码如下(同时我也比较喜欢把初始值单独return出来,表示他们是初始值):
class Solution {
public int numWays(int n) {
int a=1,b=1;
int sum=0;
if(n==0||n==1)
return 1;
for(int i=2;i<n+1;i++){
sum=(a+b)%1000000007;
a=b;
b=sum;
}
return sum;
}
}
效率也是不错,就是内存多了一点,问题不大