感知器
Loong_DQX
如果需要交流直接私信,看到会回复。
展开
-
MLP多层感知器+BP算法原理及实战
多层感知器是在感知器的基础上多元化,原来只是用一个感知器,但是单个感知器因为是单输出,所以只能进行二分类的操作,他并不能进行类似异或问题的求解,再次基础上前辈们提出了多层感知器。如上图所示,{a11,a12,a13}所代表的是第一层的神经元,{a21,a22}所代表的是第二层的神经元,图中的w代表的是权重。与单层感知器不同的是这里在前层神经元权重求和后,还有进行一次非线性激活函数激活,最后得到的就是该神经元的值。如上所示,其中f就是其中的激活函数,激活函数有类似sigmoid函数、tanh函数以及原创 2022-02-24 11:41:57 · 3133 阅读 · 0 评论 -
【神经网络】单层感知器
在了解感知机之前的先知道1943年Mccilloch和Pitts所提出的M-P模型。M-P模型其实就是现在的神经网络中的一个神经元,但是与之不同的点在于它没有非线性激活函数激活,也不能这么说,就是没有类似sigmoid或者tanh函数激活,而它用的仅仅是一个阈值去激活。所以它的数学表达式为:此处的f函数就是阈值函数。但是这里的权重w和偏置b都是人为设定的,并不存在学习一说,这就是M-P模型与单层感知器最大的区别。感知机中的权重w和偏置b是靠学习得来的。接下来就是感知机学习算法的介绍。对于误差,原创 2022-01-25 22:06:40 · 2629 阅读 · 1 评论