SNN
文章平均质量分 56
Loong_DQX
如果需要交流直接私信,看到会回复。
展开
-
论文阅读-SEFRON: A New Spiking Neuron Model With Time-Varying Synaptic Efficacy Function
1、数据编码首先介绍一下该神经元模型论文里面提到的编码方式:群体编码(population encoding)编码步骤:1、计算发放强度(就是指发放的欲望有多大)其中第h个接受域的μh和是中心和标准偏差,计算公式如下所示:然后根据所计算得到的发放强度去计算发放时间:def spiking_genersate(train_data): mu=par.mu #中心 sigma=par.sigma #偏离 RF=par.RF #接收域神经元总数原创 2022-04-18 22:20:28 · 329 阅读 · 1 评论 -
【SRM神经元模型】利用代码解析SRM神经元
在解析代码之前,我们现在看一下SRM模型。第一个函数表示一个spike应该具有的形状。其中tf是上一个发放脉冲的时间。第二个函数中Iext描述的是所有突触前脉冲时间对膜电位产生的影响。第三个函数应该很好理解,就是一个静息电位的电压。早期的文章里SRM模型被描述成:第二项就是前任神经元对本神经元对影响。第三项比较特殊一般的SNN模型里强行规定在本神经元射了之后的任何输入刺激均直接舍弃,但是这样的话显得太暴力了,不符合生物运行的规律,于是G大爷给这个贤者时间的消退也安排了函数。简单来说,在贤者原创 2022-03-02 12:30:44 · 1451 阅读 · 0 评论 -
MAT多时间尺度适应性阈值模型 non_reseting Neuron
MAT神经元模型,在我看来就是一个变动阈值一个模型,所以对于他的细胞膜电压不会有发放或者不发放的时候。这个就是神经元细胞膜电压的变动公式,类似LIF,但是这个模型跟LIF的区别在于,它不重置,所以在这个公式里面就没有重置电势。对比一下:这是LIF的电势变动。先上一下结果图:从这个图里可以看见,是适应性阈值在碰到模型电势之后阈值往上抬,然后在按照一定规则下降,再次碰到细胞膜电势之后再阈值抬高。现在开始解释阈值变动规则。其中ω是阈值的初始设定值,H(t)是变动值,tk是上个脉冲的发放时间,所原创 2021-12-21 13:06:35 · 385 阅读 · 0 评论 -
【脉冲神经元模型】Izhikevich神经元模型学习
论文 Simple Model of Spiking Neurons下载地址 https://ieeexplore.ieee.org/document/1257420/citations#citations神经元模型函数v和u是无量纲的变量,并且a,b,c和d是无量纲的参数。v代表神经元的细胞膜的电势,u代表一个细胞膜回归变量,对k离子电流的活化作用和Na离子的失活作用,它对v提供了负反馈。参数a描述回归变量u的时间范围。 更小的值导致更慢的恢复。一般a=0.02.参数b描述描述回归变量u对原创 2021-12-17 15:06:19 · 1793 阅读 · 0 评论 -
IF以及LIF神经分析
首先HH神经元模型的电路结构如下图所示:LIF神经元模型的电路图如下所示LIF神经元模型就是对HH神经元模型进行一种简化,把所有电阻都模型化成一个电阻R。利用基尔霍夫电流定律,流入节点的电流之和等于流出节点的电流之和。可以得到引入分压原理以及电容和电流之间的关系公式引入时间常数:τm = RC在这里就出现了du/dt,电压变化量的求法,用来在代码中通过前一时刻电压值求解后一时刻电压值。上代码!def run_LIF(pars, Iinj, stop=False): """原创 2021-11-22 11:31:20 · 3589 阅读 · 0 评论