概率导论
使君
这个作者很懒,什么都没留下…
展开
-
《概率导论》第2版_第1章习题40
《《概率导论》第2版_第1章习题40习题解习题有一枚不均匀的硬币,在抛掷的时候,正面出现的概率为ppp,反面出现的概率为1−p1-p1−p. 令qnq_nqn为nnn次独立抛掷后得到偶数次正面向上的概率. 导出一个联系qnq_nqn和qn−1q_{n-1}qn−1的递推公式,并利用递推公式导出qnq_nqn的公式qn=(1+(1−2p)n)/2q_n = (1+(1-2p)^n)/2qn=(1+(1−2p)n)/2.解设EnE_nEn为nnn次独立抛掷后得到偶数次正面向上的事件,P(E原创 2020-12-09 16:15:56 · 729 阅读 · 0 评论 -
《概率导论》第2版_第1章习题38
《概率导论》第2版_第1章习题38习题38解习题38点数问题. 泰里思和温迪在玩18个洞的高尔夫球,奖金为10元钱.他们各自赢得一个洞的概率分别为 p(泰里思)和1-p(温迪),并且各个洞的输赢是相互独立的.打完10个洞的时候,他们的比分为4:6,温迪占上风.此时泰里思接到一个紧急电话,必须回单位工作.他们决定按照他们打完比赛时候赢得比赛的概率分割奖金.假定pT(pW)p_T(p_W)pT(pW) 代表在目前10个洞的比分4:6的条件下,完成18个洞的比赛后泰里思(温迪)领先的概率,则泰里思原创 2020-12-09 10:49:21 · 326 阅读 · 0 评论 -
《概率导论》第2版_第1章习题37
《概率导论》第2版_第1章习题37习题37解习题37有一个手机服务系统,它有n1n_1n1个电话用户(有时候需要电话连接)和n2n_2n2个数据用户(有时候需要数据连接).我们估计在给定的时刻,每个电话用户需要系统服务的概率为p1p_1p1 ,每个数据用户需要系统服务的概率为p1p_1p1 .假定各用户的需求是相互独立的.已知一个电话用户的数据传输率为r1r_1r1比特/秒,一个数据用户的数据传输率为r2r_2r2比特/秒.而手机服务系统的容量为 c 比特/秒.用户的需求超过系统容量原创 2020-12-08 20:21:44 · 577 阅读 · 0 评论 -
《概率导论》第2版_第1章习题33
第2版_第1章习题33习题33解习题33利用有偏的硬币作出无偏的决策.爱丽丝和鲍勃想利用一枚均匀的硬币来决定他们去看歌剧还是看电影.不幸的是,他们只有一枚有偏的硬币(而且他们并不知道偏的程度).怎样利用一枚有偏的硬币作出无偏的决策,即以1/2的概率看电影,1/2的概率看歌剧呢?解如下图所示,抛两枚硬币,一共有四种事件。其中,(正,负)和(负,正)的概率是一样的。p2p(1−p)(1−p)p(1−p)2\def\arraystretch{1.5} \begin{array}{c|c}原创 2020-12-08 18:14:51 · 491 阅读 · 0 评论 -
《概率导论》第2版_第1章习题23
第2版_第1章习题23习题23解序贯树形图Python实现习题23一共有两个罐子,最初两个罐子中含有相等个数的球.现在进行一次球的交换,即同时从各自的罐子中随机地拿出一个球放到对方的罐子中去.经过4次这样的交换以后,两个罐子的状态保持不变的概率是多少?所谓状态保持不变即原来在哪个罐子的球还是在哪个罐子中.解设有罐A和B,球的个数为n。(n,k)为A罐中总共有n个球,其中k个为原本B罐的球的事件。(n,k,i)为交换i次后,A罐中有k个原本B罐的球的事件。P(n,0,4)\operato原创 2020-12-07 22:52:33 · 976 阅读 · 1 评论