用柯西定理证明泰勒公式的拉格朗日余项
已知f(x)f(x)f(x)在(a,b)(a,b)(a,b)上有n+1n+1n+1阶导数,x0∈(a,b)x_0 \in (a,b)x0∈(a,b),则在(a,b)(a,b)(a,b)成立f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+Rn(x)f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n
原创
2021-04-04 10:20:34 ·
3636 阅读 ·
7 评论