【线性代数】施密特正交化方法——Python实现
@[TOC]目录
思想
施密特正交化方法:
将n维子空间中的任意一组基向量变换成标准正交向量。
假设有两个向量a⃗\vec{a}a和b⃗\vec{b}b,若要使两向量正交,则a⃗\vec{a}a不变,b⃗\vec{b}b可分解为b⃗\vec{b}b在a⃗\vec{a}a上的投影b′⃗\vec{b'}b′和误差向量e⃗\vec{e}e。因为a⃗\vec{a}a和e⃗\vec{e}e正交,所以将a⃗\vec{a}a和e⃗\vec{e}e标准化后,即为一组标准正交向量。
设初始矩阵为A=[a1,a2,a3,...
原创
2022-01-09 23:10:19 ·
5571 阅读 ·
0 评论