阅读笔记:ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Task

ViLBERT模型通过双流结构分别对文本和图像进行预训练,解决传统方法中视觉和语言模型泛化能力不足的问题。采用Co-Attentional Transformer Layers,在特定层融合文本和视觉信息,避免早期融合导致的损失。预训练任务包括预测遮罩的文本和图像 token,以及判断图文对齐。相较于单一流模型,ViLBERT强调不同信息流的独立处理和适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读笔记:ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

在这里插入图片描述

Contribution

  • 提出 ViLBERT 模型(two streams model),由两个BERT结构分别对text和image进行学习,通过cross-attention进行信息交流,在两个预训练任务(proxy tasks)上进行预训练。最后在4个task上进行finetune:visual question answering、visual commonsense reasoning, referring expressions、caption-based image retrieval

  • 指出主流visual-text model的问题:

    the dominant strategy is to start with separate language and vision models pretrained for other large-scale tasks and then learn grounding as part of task training – often resulting in myopic gr

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值