keras调用BERT、ALBERT、ROBERTA、ERNIE等Transformer encoder 预训练模型进行多种自然语言理解任务

该项目提供了一种使用Keras调用BERT、ALBERT、ROBERTA、ERNIE等Transformer预训练模型的方法,支持分类、命名实体识别和阅读理解等多种自然语言理解任务。还包含了学习率分段设置、模型微调、训练可视化等功能,并提供了数据格式说明和模型保存。
摘要由CSDN通过智能技术生成

项目地址:
https://github.com/stupidHIGH/bert_family_tasks
后续会继续更新使用模型进行命名实体识别、机器翻译、阅读理解等任务的实现,有兴趣共同学习进步的童靴阔以follow后方便获取资源(  ̄▽ ̄)σ


bert_family_classification

支持Roberta、albert、bert以及转化为tf版本的ernie等bert大家族所有预训练模型的加载、完成cls、ner、mrc三种经典任务(部分predict代码需要自行调整,train没有大问题)。

支持分段设置学习率,提高模型表现。

支持继续在domain数据中继续进行pertrain(albert除外)

支持冻结不同encoder层以优化模型效果(albert除外)

支持提取不同encoder层的输出并在此基础上修改网络结构

提供自定义loss和callback函数,便于使用者在此基础上调整

支持对于不均衡样本二、多分类的focal loss函数

支持tensorboard调用(需要修改tensorboard部分源码,方法参考https://www.jianshu.com/p/9da54361d289),实现训练可视化

###########################################################

/stripts目录下保存在服务器进行训练的命令

/data中每个数字子目录保存每次对模型或者数据进行调整之后的训练数据,便于模型调优

/data/1/下放有cls、ner、mrc三个任务数据格式的说

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值