基于小波变换的图像压缩
是指对图像应用小波变换算法来进行多分辨率分解,通过对小波系数进行编码来实现图像压缩。
处理流程为
1,对图像进行多级小波分解,得到相应的小波系数;
2,对每层小波系数进行量化,得到量化系数对象;
3,对量化后的系数对象进行编码,得到压缩结果。

图像矩阵是二维矩阵,假设图像矩阵大小为N*N,且n=2^n,那么经过一层小波变换后,原始图像便分解为4个分辨率为原来尺寸1/2的子带区域(LL,HL,LH,HH),分别包含了相应频带的小波系数。这一过程相当于在水平、垂直方向上进行隔点采样。下一步是进一步进行的2级小波分解。
LL频带保持了原始图像的内容信息,图像的能量集中于次频带。对于图像水平、垂直方向均进行低通滤波得到;
HL频带保持了图像水平方向上的高频边缘信息。对图像水平方向高通滤波和垂直方向低通滤波得到;
LH频带保持了图像垂直方向上的高频边缘信息。对图像水平方向低通滤波和垂直方向高通滤波得到;
HH频带保持了图像在对角线方向上的高频信息。对图像水平、垂直方向均进行高通滤波得到。
一个图像经过小波分解后,可以得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率也不同。高分辨率(即高频)子图像上大部分点的数值都接近于0,分辨率越高,这种现象越明显。要注意的是,在N级二维小波分解中,分解级别越高的子图像,频率越低。子图像HL2、LH2、HH2的频率要比子图像HL1、LH1、HH1的频率低,相应地分辨率也较低。根据不同分辨率下小波变换系数的这种层次模型,我们可以得到以下三种简单的图像压缩方案。
方案一:舍高频,取低频
一幅图像最主要的表现部分是低频部分,因此我们可以在小波重构时,只保留小波分解得到的低频部分,

该文详细介绍了基于小波变换的图像压缩技术,包括图像的多级小波分解、系数量化和编码过程。小波分解将图像分为LL、HL、LH和HH四个子带,低频部分(LL)包含主要信息,高频部分(HL、LH、HH)则包含细节和边缘。提出了三种压缩方案:舍高频取低频、阈值法和截取法。阈值法通过设定阈值保留重要系数,而截取法则保留最大比例的系数。这些方法在图像质量和压缩率之间寻找平衡。
最低0.47元/天 解锁文章
3748

被折叠的 条评论
为什么被折叠?



