LeetCode--53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:

输入:nums = [1]
输出:1
示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

在我们作答之前来明白一个问题,什么是动态规划?

动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。

简单来说,动态规划其实就是,给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。

一般这些子问题很相似,可以通过函数关系式递推出来。然后呢,动态规划就致力于解决每个子问题一次,减少重复计算,比如斐波那契数列就可以看做入门级的经典动态规划问题。

动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算。

本题是经典DP题

1、动态规划

鉴于DP是一种算法思想,应用在本题中,为了更清楚说明,代码中注释会详细说明

java:

class Solution {
    public int maxSubArray(int[] nums) {
        // 总的最大值
        int ans = nums[0];
        // 以当前元素为结尾的最大值
        int cur = nums[0];
        for (int i = 1; i < nums.length; i++){
            //从第二个元素开始遍历,如果元素大于当前的cur,并且当前cur小于0,说明:当前cur值已经负数了,
            //你再加上一个比它大的数只会越加越小,那只有将cur重新赋值
            if (nums[i] > cur && cur <= 0){
                cur = nums[i];
            }
            // 否则cur是一个正数,先加上再说,虽然不知道加上之后变大还是变小了
            else{
                cur += nums[i];
            }
            // 这个时候我们把答案更新一下
            ans = Math.max(ans, cur);
        }
        return ans;
    }
}

python:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        ans = nums[0]  # 总的最大值
        cur = nums[0]  # 以当前为结尾的最大值
        for i in range(1,len(nums)):
            if nums[i] > cur and cur <= 0:
                cur = nums[i]
            else:
                cur += nums[i]
            ans = max(ans, cur)
        return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值