给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
在我们作答之前来明白一个问题,什么是动态规划?
动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。
简单来说,动态规划其实就是,给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。
一般这些子问题很相似,可以通过函数关系式递推出来。然后呢,动态规划就致力于解决每个子问题一次,减少重复计算,比如斐波那契数列就可以看做入门级的经典动态规划问题。
动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算。
本题是经典DP题
1、动态规划
鉴于DP是一种算法思想,应用在本题中,为了更清楚说明,代码中注释会详细说明
java:
class Solution {
public int maxSubArray(int[] nums) {
// 总的最大值
int ans = nums[0];
// 以当前元素为结尾的最大值
int cur = nums[0];
for (int i = 1; i < nums.length; i++){
//从第二个元素开始遍历,如果元素大于当前的cur,并且当前cur小于0,说明:当前cur值已经负数了,
//你再加上一个比它大的数只会越加越小,那只有将cur重新赋值
if (nums[i] > cur && cur <= 0){
cur = nums[i];
}
// 否则cur是一个正数,先加上再说,虽然不知道加上之后变大还是变小了
else{
cur += nums[i];
}
// 这个时候我们把答案更新一下
ans = Math.max(ans, cur);
}
return ans;
}
}
python:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
ans = nums[0] # 总的最大值
cur = nums[0] # 以当前为结尾的最大值
for i in range(1,len(nums)):
if nums[i] > cur and cur <= 0:
cur = nums[i]
else:
cur += nums[i]
ans = max(ans, cur)
return ans