【斯坦福21秋季实用机器学习--1.2数据获取】

本文介绍了机器学习中数据获取的方法,包括直接使用现成数据集、自行收集和数据增强。列举了多个常用数据集如MNIST、ImageNet等,并提到了数据来源如Kaggle、Google Dataset Search。还讨论了数据集的选择、收集及处理技巧,如学术数据集与竞赛数据集的优缺点,以及数据增强技术在图像和文本上的应用。
摘要由CSDN通过智能技术生成


学习笔记:课程来自于 跟李沐学AI
链接如下:https://www.bilibili.com/video/BV1Lf4y1n7LN/?spm_id_from=pageDriver


一、数据的发现

  1. 有现成的数据集:直接拿来用。
  2. 没有现成的数据集:需要自己进行数据收集,无法收集的,可以进行数据增强等操作。

数据获取

二、一些常见的机器学习的数据集

1.机器学习数据集

维基百科中关于数据集的列表:https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

MNIST:一个手写的数据集。http://yann.lecun.com/exdb/mnist/
ImageNet:从图片搜索引擎获取的图片数据集。https://www.image-net.org/
AudioSet:YouTube的声音切片的数据集。https://research.google.com/audioset/
Kinetics:YouTube的视频切片的数据集。https://deepmind.com/research/open-source/kinetics
KITTI:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌小猛男

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值