最大似然估计

本文介绍了最大似然估计的概念和方法,通过两个实例解释了如何利用已知样本信息反推模型参数。在第一个实例中,通过抽样球的颜色比例估计罐中白球比例,展示了最大似然估计求解过程。第二个实例则涉及正态分布参数估计,说明了在无法获取全面数据时,如何通过小样本估计总体特性。最大似然估计的核心在于寻找使样本出现概率最大的参数值。
摘要由CSDN通过智能技术生成

目的

最大概率反推模型的参数值。

方法

利用已知的样本结果信息。

前提

所有的采样都是独立同分布的。

理解

首先看一下似然函数 p ( x ∣ θ ) p(x \mid \theta) p(xθ)的理解。

对于这个函数,输入有两个: x x x表示某一个具体的数据; θ \theta θ表示模型的参数。

如果 θ \theta θ是已知确定的, x x x是变量,这个函数叫做概率函数,它描述对于不同的样本点 x x x,其出现的概率是多少。

如果 x x x是已知确定的, θ \theta θ是变量,这个函数叫做似然函数,它描述对于不同的模型参数,出现 x x x这个样本点的概率是多少。

这有点像“一菜两吃”的意思。其实这样的形式我们以前也还是遇到过的。
例如, f ( x , y ) = x y f(x,y) = x^y f(x,y)=xy,即 x x x y y y次方。
如果 x x x是已知确定的(例如 x = 2 x = 2 x=2),这就是 f ( y ) = 2 y f(y) = 2 ^ y f(y)=2y,这是指数函数。
如果 y y y是已知确定的(例如 y = 2 y = 2 y=2),这就是 f ( x ) = x 2 f(x) = x ^ 2 f(x)=x2,这是二次函数。
同一个数学形式,从不同的变量角度观察,可以有不同的名字。

实例1

假设有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐子中黑白球的比例。假如再前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?

很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

我们假设罐子中白球的比例是 p p p,那么黑球的比例是 1 − p 1 - p 1p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜色服从同一独立分布

这里我们把一次抽出来球的颜色称为一次采样。题目中在一百次采样中,七十次是白球,三十次是黑球事件的概率是:

P ( 样 本 结 果 ∣ M o d e l ) P(样本结果|Model) P(Model)

如果第一次抽象的结果记为 x 1 x_1 x1,第二次抽样的结果记为 x 2 x_2 x2,……,那么样本结果为( x 1 x_1 x1 x 2 x_2 x2,……, x 1 00 x_100 x100)。这样,我们可以的大如下表达式:

P ( 样 本 结 果 ∣ M o d e l ) = P ( x 1 , x 2 , . . . , x 100 ∣ M o d e l ) = P ( x 1 ∣ M ) P ( x 2 ∣ M ) . . . P ( x 100 ∣ M ) = p 70 ( 1 − p ) 30 P(样本结果|Model) =P(x_1,x_2,...,x_{100}|Model) =P(x_1|M)P(x_2|M)...P(x_{100}|M) =p^{70}(1-p)^{30} P(Model)=P(x1,x2,...,x100Model)=P(x1M)P(x2M)...P(x100M)=p70(1p)30

那么这里已经有了观察样本结果出现的概率表达式了。那么我们要求的模型的参数,也就是求式中的 p p p

那么我们怎么来求这个 p p p呢?

不同的 p p p,直接导致 P ( 样 本 结 果 ∣ M o d e l ) P(样本结果|Model) P(Model)的不同。

实际上 p p p有无数多种分布。
p = 0.5 p = 0.5 p=0.5时, p 70 ( 1 − p ) 30 = 7.8 ∗ 1 0 − 31 p^{70}(1 - p)^{30} = 7.8 * 10^{-31} p70(1p)30=7.81031
p = 0.7 p = 0.7 p=0.7时, p 70 ( 1 − p ) 30 = 2.95 ∗ 1 0 − 27 p^{70}(1 - p)^{30} = 2.95 * 10^{-27} p70(1p)30=2.951027

那么,这里既然有无数种分布可以选择,极大似然估计应该按照什么原则去选取这个分布呢?

答:采取的方法是让这个样本结果出现的可能性最大,也就是使得 p 70 ( 1 − p ) 30 p^{70}(1-p)^{30} p70(1p)30值最大,那么我们就可以看成是 p p p的方程,求导即可。

那么既然事情已经发生了,为什么不让这个出现的结果的可能性最大呢?这也就是最大似然估计的核心。

我们想办法让观察样本出现的概率最大,转换为数学问题就是使得:

p 70 ( 1 − p ) 30 p^{70}(1-p)^{30} p70(1p)30最大,这里我们令 p 70 ( 1 − p ) 30 p^{70}(1-p)^{30} p70(1p)30的导数为0,即可求出 p p p为70%,与我们一开始认为的70%是一致的。其中蕴含着我们的数学思想在里面。

实例2

假设我们要统计全国人民的年均收入,首先假设这个收入服从正态分布,但是该分布的均值与方差未知。

没有太多人力和物力来统计全国每个人的收入,这里就可以用到最大似然估计。

我们比如选取一个城市或者一个乡镇的人口收入,作为我们的观察样本结果。然后通过最大似然估计获取上述假设中的正态分布的参数。

有了参数的结果后,我们就知道该正态分布的期望和方差了,也就是我们通过了一个小样本的采样,反过来知道了全国人民年收入的一系列重要的数学指标量。

最大似然估计的核心关键就是对于一些情况,样本太多,无法得出分布的参数值,可以采样小样本后,利用最大似然估计获取假设中分布的参数值。

问题

为什么最大似然函数最大,参数就最有可能?

现在已经拿到了很多个样本(我们的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那些参数的估计值,使得前面已经实现的样本值发生概率最大。因为手头上的样本已经实现了,其发生概率最大才符合逻辑。

这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总。此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值