哈工大数理逻辑第4章习题参考答案

1. 指 出 下 列 谓 词 公 式 中 的 自 由 变 元 与 约 束 变 元 , 并 说 明 什 么 样 的 项 对 这 些 自 由 变 元 是 可 代 入 得 。 1.指出下列谓词公式中的自由变元与约束变元,并说明什么样的项对这些自由变元是可代入得。 1.
( 1 ) ∃ x P ( x ) ∧ P ( y ) (1)\exists xP(x)\land P(y) (1)xP(x)P(y)
x 是 约 束 变 元 x是约束变元 x
y 是 自 由 变 元 , 可 代 入 不 含 约 束 变 元 x 的 项 y是自由变元,可代入不含约束变元x的项 y,x
( 2 ) ∀ x ( P ( x ) ∧ Q ( v ) → ∃ y ( R ( y ) ∧ S ( x ) ) ) (2)\forall x(P(x)\land Q(v)\to \exists y(R(y)\land S(x))) (2)x(P(x)Q(v)y(R(y)S(x)))
x 是 约 束 变 元 x是约束变元 x
y 是 约 束 变 元 y是约束变元 y
v 是 自 由 变 元 , 可 代 入 不 含 约 束 变 元 x 的 项 v是自由变元,可代入不含约束变元x的项 v,x
3. 假 设 论 域 为 整 数 集 合 , 确 定 下 列 语 句 的 真 值 。 3.假设论域为整数集合,确定下列语句的真值。 3.
( 1 ) ∀ n ∃ m ( n 2 < m ) = T (1)\forall n\exists m(n^{2} < m) = T (1)nm(n2<m)=T
( 2 ) ∃ n ∀ m ( n < m 2 ) = T (2)\exists n\forall m(n < m^{2}) = T (2)nm(n<m2)=T
n 为 负 数 n为负数 n
( 3 ) ∀ n ∃ m ( n + m = 0 ) = T (3)\forall n\exists m (n + m = 0) = T (3)nm(n+m=0)=T
n , m 互 为 相 反 数 n,m互为相反数 n,m
( 4 ) ∃ n ∀ m ( n m = m ) = T (4)\exists n\forall m(nm = m) = T (4)nm(nm=m)=T
n = 1 n = 1 n=1
( 5 ) ∃ n ∃ m ( n 2 + m 2 = 6 ) = F (5)\exists n\exists m(n^{2} + m^{2} = 6) = F (5)nm(n2+m2=6)=F
( 6 ) ∀ n ∀ m ∃ p ( p = ( n + m ) / 2 ) = F (6)\forall n\forall m\exists p(p = (n + m)/2) = F (6)nmp(p=(n+m)/2)=F
n = 0 , m = 1 n = 0,m = 1 n=0,m=1
4. 假 设 论 域 为 实 数 集 合 , 确 定 下 列 语 句 的 真 值 。 4.假设论域为实数集合,确定下列语句的真值。 4.
( 1 ) ∀ x ∃ y ( x 2 = y ) = T (1)\forall x\exists y(x^{2} = y) = T (1)xy(x2=y)=T
( 2 ) ∀ x ∃ y ( x = y 2 ) = F (2)\forall x\exists y(x = y^{2}) = F (2)xy(x=y2)=F
当 x 为 负 数 时 , 量 词 内 表 达 式 为 假 当x为负数时,量词内表达式为假 x,
( 3 ) ∃ x ∀ y ( x y = 0 ) = T (3)\exists x\forall y(xy = 0) = T (3)xy(xy=0)=T
( 4 ) ∀ x ( x ≠ 0 → ∃ y ( x y = 1 ) ) = T (4)\forall x(x\ne 0\to \exists y(xy = 1)) = T (4)x(x=0y(xy=1))=T
( 5 ) ∃ x ∀ y ( y ≠ 0 → x y = 1 ) = F (5)\exists x\forall y(y\ne 0\to xy = 1) = F (5)xy(y=0xy=1)=F
( 6 ) ∀ x ∃ y ( x + y = 1 ) = T (6)\forall x \exists y(x + y = 1) = T (6)xy(x+y=1)=T
( 7 ) ∀ x ∃ y ( x + y ) = 2 ∧ 2 x − y = 1 = F (7)\forall x \exists y(x + y) = 2 \land 2x - y = 1 = F (7)xy(x+y)=22xy=1=F
只 有 当 x = 1 , y = 1 时 , 量 词 内 表 达 式 才 为 真 只有当x = 1,y = 1时,量词内表达式才为真 x=1,y=1,
( 8 ) ∀ x ∀ y ∃ z ( z = ( x + y ) / 2 ) ) = T (8)\forall x\forall y \exists z(z = (x + y)/2)) = T (8)xyz(z=(x+y)/2))=T
5. 将 下 列 公 式 中 的 否 定 词 等 价 变 换 到 谓 词 中 去 , 即 否 定 词 不 在 量 词 外 边 , 也 不 在 含 逻 辑 联 结 词 的 表 达 式 的 外 边 。 5.将下列公式中的否定词等价变换到谓词中去,即否定词不在量词外边,也不在含逻辑联结词的表达式的外边。 5.
( 1 ) ¬ ∃ x ∃ y P ( x , y ) (1)\neg \exists x \exists yP(x,y) (1)¬xyP(x,y)
= ∀ x ¬ ∃ y P ( x , y ) =\forall x\neg \exists yP(x,y) =x¬yP(x,y)
= ∀ x ∀ y ¬ P ( x , y ) =\forall x\forall y\neg P(x,y) =xy¬P(x,y)
( 2 ) ¬ ∀ x ∃ y P ( x , y ) (2)\neg \forall x\exists yP(x,y) (2)¬xyP(x,y)
= ∃ x ¬ ∃ y P ( x , y ) =\exists x\neg \exists yP(x,y) =x¬yP(x,y)
= ∃ x ∀ y ¬ P ( x , y ) =\exists x\forall y\neg P(x,y) =xy¬P(x,y)
( 3 ) ¬ ∃ y ( Q ( y ) ∧ ∀ x ¬ R ( x , y ) ) (3)\neg \exists y(Q(y)\land \forall x\neg R(x,y)) (3)¬y(Q(y)x¬R(x,y))
= ∀ y ¬ ( Q ( y ) ∧ ∀ x ¬ R ( x , y ) ) =\forall y\neg (Q(y)\land \forall x\neg R(x,y)) =y¬(Q(y)x¬R(x,y))
= ∀ y ( ¬ Q ( y ) ∨ ¬ ∀ x ¬ R ( x , y ) ) =\forall y(\neg Q(y)\lor \neg \forall x\neg R(x,y)) =y(¬Q(y)¬x¬R(x,y))
= ∀ y ( ¬ Q ( y ) ∨ ∃ x R ( x , y ) ) =\forall y(\neg Q(y)\lor \exists xR(x,y)) =y(¬Q(y)xR(x,y))
( 4 ) ¬ ∃ y ( ∃ x R ( x , y ) ∨ ∀ x S ( x , y ) ) (4)\neg \exists y(\exists xR(x,y)\lor \forall xS(x,y)) (4)¬y(xR(x,y)xS(x,y))
= ∀ y ¬ ( ∃ x R ( x , y ) ∨ ∀ x S ( x , y ) ) =\forall y\neg (\exists xR(x,y)\lor \forall xS(x,y)) =y¬(xR(x,y)xS(x,y))
= ∀ y ( ¬ ∃ x R ( x , y ) ∧ ¬ ∀ x S ( x , y ) ) =\forall y(\neg \exists xR(x,y)\land \neg \forall xS(x,y)) =y(¬xR(x,y)¬xS(x,y))
= ∀ y ( ∀ x ¬ R ( x , y ) ∧ ∃ x ¬ S ( x , y ) ) =\forall y(\forall x\neg R(x,y)\land \exists x\neg S(x,y)) =y(x¬R(x,y)x¬S(x,y))
( 5 ) ¬ ∃ y ( ∀ x ∃ z T ( x , y , z ) ∨ ∃ x ∀ z W ( x , y , z ) ) (5)\neg \exists y(\forall x\exists zT(x,y,z)\lor \exists x\forall zW(x,y,z)) (5)¬y(xzT(x,y,z)xzW(x,y,z))
= ∀ y ¬ ( ∀ x ∃ z T ( x , y , z ) ∨ ∃ x ∀ z W ( x , y , z ) ) =\forall y\neg (\forall x\exists zT(x,y,z)\lor \exists x\forall zW(x,y,z)) =y¬(xzT(x,y,z)xzW(x,y,z))
= ∀ y ( ¬ ∀ x ∃ z T ( x , y , z ) ∧ ¬ ∃ x ∀ z W ( x , y , z ) ) =\forall y(\neg \forall x\exists zT(x,y,z)\land \neg \exists x\forall zW(x,y,z)) =y(¬xzT(x,y,z)¬xzW(x,y,z))
= ∀ y ( ∃ x ¬ ∃ z T ( x , y , z ) ∧ ∀ x ¬ ∀ z W ( x , y , z ) ) =\forall y(\exists x\neg \exists zT(x,y,z)\land \forall x\neg \forall zW(x,y,z)) =y(x¬zT(x,y,z)x¬zW(x,y,z))
= ∀ y ( ∃ x ∀ z ¬ T ( x , y , z ) ∧ ∀ x ∃ z ¬ W ( x , y , z ) ) =\forall y(\exists x\forall z \neg T(x,y,z)\land \forall x\exists z\neg W(x,y,z)) =y(xz¬T(x,y,z)xz¬W(x,y,z))
6. 将 下 列 自 然 语 句 形 式 化 为 谓 词 公 式 。 6.将下列自然语句形式化为谓词公式。 6.
( 1 ) 所 有 能 被 2 整 除 的 整 数 都 是 偶 数 。 (1)所有能被2整除的整数都是偶数。 (1)2
令 : x 的 论 域 为 整 数 令:x的论域为整数 :x
谓 词 P ( x ) : x 能 被 2 整 除 谓词P(x):x能被2整除 P(x):x2
谓 词 Q ( x ) : x 是 偶 数 谓词Q(x):x是偶数 Q(x):x
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
∀ x ( P ( x ) → Q ( x ) ) \forall x(P(x)\to Q(x)) x(P(x)Q(x))
( 2 ) 有 些 偶 数 能 被 3 整 除 。 (2)有些偶数能被3整除。 (2)3
令 : x 的 论 域 为 偶 数 令:x的论域为偶数 :x
谓 词 P ( x ) : x 能 被 3 整 除 谓词P(x):x能被3整除 P(x):x3
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
∃ x P ( x ) \exists xP(x) xP(x)
( 3 ) 是 金 子 都 闪 光 , 但 闪 光 的 并 不 都 是 金 子 。 (3)是金子都闪光,但闪光的并不都是金子。 (3)
令 : x 的 论 域 为 一 切 事 物 令:x的论域为一切事物 :x
谓 词 P ( x ) : x 是 金 子 谓词P(x):x是金子 P(x):x
谓 词 Q ( x ) : x 闪 光 谓词Q(x):x闪光 Q(x):x
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
1 ) ∀ x ( P ( x ) → Q ( x ) ) 1)\forall x(P(x)\to Q(x)) 1)x(P(x)Q(x))
2 ) ¬ ∀ x ( Q ( x ) → P ( x ) ) 2)\neg \forall x(Q(x)\to P(x)) 2)¬x(Q(x)P(x))
( 4 ) 每 个 自 然 数 都 有 唯 一 一 个 自 然 数 是 它 的 直 接 后 继 。 (4)每个自然数都有唯一一个自然数是它的直接后继。 (4)
令 : x , y , u 的 论 域 为 自 然 数 令:x,y,u的论域为自然数 :x,y,u
谓 词 P ( x , y ) : y 是 x 的 直 接 后 继 谓词P(x,y):y是x的直接后继 P(x,y):yx
谓 词 E ( x , y ) : x 和 y 相 等 谓词E(x,y):x和y相等 E(x,y):xy
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
∀ x ∃ y ( P ( x , y ) ∧ ∀ u ( P ( x , u ) → E ( y , u ) ) \forall x\exists y(P(x,y)\land \forall u(P(x,u)\to E(y,u)) xy(P(x,y)u(P(x,u)E(y,u))
( 5 ) 有 些 学 生 相 信 所 有 的 教 师 。 (5)有些学生相信所有的教师。 (5)
任 何 一 个 学 生 都 不 相 信 骗 子 。 任何一个学生都不相信骗子。
所 以 教 师 都 不 是 骗 子 。 所以教师都不是骗子。
令 : x , y 的 论 域 为 人 令:x,y的论域为人 :x,y
谓 词 P ( x ) : x 是 学 生 谓词P(x):x是学生 P(x):x
谓 词 Q ( x ) : x 是 教 师 谓词Q(x):x是教师 Q(x):x
谓 词 R ( x ) : x 是 骗 子 谓词R(x):x是骗子 R(x):x
谓 词 T ( x , y ) : x 信 任 y 谓词T(x,y):x信任y T(x,y):xy
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
1 ) ∃ x ( P ( x ) ∧ ∀ y ( Q ( y ) → T ( x , y ) ) ) 1)\exists x(P(x)\land \forall y(Q(y)\to T(x,y))) 1)x(P(x)y(Q(y)T(x,y)))
2 ) ∀ x ( P ( x ) → ∀ y ( R ( y ) → ¬ T ( x , y ) ) ) 2)\forall x(P(x)\to \forall y(R(y)\to \neg T(x,y))) 2)x(P(x)y(R(y)¬T(x,y)))
3 ) ∀ y ( Q ( y ) → ¬ R ( y ) ) 3)\forall y(Q(y)\to \neg R(y)) 3)y(Q(y)¬R(y))
( 6 ) 计 算 机 系 的 每 个 研 究 生 要 么 是 推 荐 免 试 生 要 么 是 统 考 生 。 (6)计算机系的每个研究生要么是推荐免试生要么是统考生。 (6)
所 有 推 荐 免 试 生 的 本 科 课 程 成 绩 都 很 好 。 所有推荐免试生的本科课程成绩都很好。
但 并 非 所 有 研 究 生 本 科 课 成 绩 都 很 好 。 但并非所有研究生本科课成绩都很好。
所 以 一 定 有 研 究 生 是 统 考 生 。 所以一定有研究生是统考生。
令 : x 的 论 域 为 计 算 机 系 的 研 究 生 令:x的论域为计算机系的研究生 :x
谓 词 P ( x ) : x 是 推 荐 免 试 生 谓词P(x):x是推荐免试生 P(x):x
谓 词 Q ( x ) : x 是 统 考 生 谓词Q(x):x是统考生 Q(x):x
谓 词 R ( x ) : x 的 本 科 课 程 成 绩 很 好 谓词R(x):x的本科课程成绩很好 R(x):x
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
1 ) ∀ x ( P ( x ) ⊕ Q ( x ) ) 1)\forall x(P(x)\oplus Q(x)) 1)x(P(x)Q(x))
2 ) ∀ x ( P ( x ) → R ( x ) ) 2)\forall x(P(x)\to R(x)) 2)x(P(x)R(x))
3 ) ¬ ∀ x R ( x ) 3)\neg \forall xR(x) 3)¬xR(x)
4 ) ∃ x Q ( x ) 4)\exists xQ(x) 4)xQ(x)
( 7 ) 一 名 学 生 想 要 取 得 硕 士 学 位 , 必 须 至 少 修 满 60 个 学 分 , 或 至 少 修 满 45 学 分 并 通 过 硕 士 论 文 答 辩 , 并 且 所 有 必 修 课 程 的 成 绩 不 低 于 B 。 (7)一名学生想要取得硕士学位,必须至少修满60个学分,或至少修满45学分并通过硕士论文答辩,并且所有必修课程的成绩不低于B。 (7)6045B
令 : x 的 论 域 为 学 生 令:x的论域为学生 :x
谓 词 P ( x ) : x 取 得 硕 士 学 位 谓词P(x):x取得硕士学位 P(x):x
谓 词 Q ( x ) : x 至 少 修 满 60 个 学 分 谓词Q(x):x至少修满60个学分 Q(x):x60
谓 词 R ( x ) ) : x 至 少 修 满 45 学 分 并 通 过 硕 士 论 文 答 辩 谓词R(x)):x至少修满45学分并通过硕士论文答辩 R(x)):x45
谓 词 T ( x ) : x 所 有 必 修 课 程 的 成 绩 不 低 于 B 谓词T(x):x所有必修课程的成绩不低于B T(x):xB
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为: :
∀ x ( P ( x ) → ( Q ( x ) ∨ R ( x ) ) ∧ T ( x ) ) \forall x(P(x)\to (Q(x)\lor R(x))\land T(x)) x(P(x)(Q(x)R(x))T(x))

  • 5
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值