2017年哈工大数理逻辑期末考试参考答案

  1. 求公式 ( ( p → r ) ∧ ¬ r ) → ( q ∧ r ) ((p\to r)\land \neg r)\to (q\land r) ((pr)¬r)(qr)的主合取范式,主析取范式。
    此公式真值表如下
p p p q q q r r r p → r p\to r pr ¬ r \neg r ¬r ( p → r ) ∧ ¬ r (p\to r)\land \neg r (pr)¬r q ∧ r q\land r qr ( ( p → r ) ∧ ¬ r ) → ( q ∧ r ) ((p\to r)\land \neg r)\to (q\land r) ((pr)¬r)(qr)
00011100
00110001
01011100
01110011
10001001
10110001
11001001
11110011

由此可知弄假指派只有
α = [ p q r 0 0 0 ] , β = [ p q r 0 1 0 ] \alpha= \left[ \begin{matrix} p & q & r \\ 0 & 0 & 0 \end{matrix} \right] ,\beta= \left[ \begin{matrix} p & q & r \\ 0 & 1 & 0 \end{matrix} \right] α=[p0q0r0],β=[p0q1r0]
其余均为弄真指派
因此,该公式的主合取范式为 ( p ∨ q ∨ r ) ∧ ( p ∨ ¬ q ∨ r ) (p\lor q\lor r)\land(p\lor \neg q\lor r) (pqr)(p¬qr)
主析取范式为 ( ¬ p ∧ ¬ q ∧ r ) ∨ ( ¬ p ∧ q ∧ r ) ∨ ( p ∧ ¬ q ∧ ¬ r ) ∨ ( p ∧ ¬ q ∧ r ) ∨ ( p ∧ q ∧ ¬ r ) ∨ ( p ∧ q ∧ r ) (\neg p\land \neg q \land r)\lor (\neg p\land q\land r)\lor (p\land \neg q\land \neg r)\lor (p\land \neg q\land r)\lor (p\land q\land \neg r)\lor (p \land q\land r) (¬p¬qr)(¬pqr)(p¬q¬r)(p¬qr)(pq¬r)(pqr)

  1. 用" ↑ \uparrow "," ↓ \downarrow ”表示公式 ( ¬ p → q ) → ( p → r ) (\neg p\to q)\to (p\to r) (¬pq)(pr)
    ( ¬ p → q ) → ( p → r )    ⟺    ¬ ( p ∨ q ) ∨ ( ¬ p ∨ r )    ⟺    ( ¬ p ∧ ¬ q ) ∨ ¬ p ∨ r    ⟺    ¬ p ∨ r    ⟺    ( p ↓ p ) ∨ r    ⟺    ( ( p ↓ p ) ↓ r ) ↓ ( ( p ↓ p ) ↓ r )    ⟺    ¬ ( p ∧ ¬ r )    ⟺    p ↑ ¬ r    ⟺    p ↑ ( r ↑ r ) \begin{aligned} (\neg p\to q)\to (p\to r) &\iff \neg (p\lor q)\lor (\neg p\lor r) \\ &\iff (\neg p\land \neg q)\lor \neg p\lor r \\ &\iff \neg p\lor r \\ &\iff (p\downarrow p)\lor r \\ &\iff ((p\downarrow p)\downarrow r)\downarrow ((p\downarrow p)\downarrow r) \\ &\iff \neg(p \land \neg r) \\ &\iff p\uparrow \neg r \\ &\iff p\uparrow (r\uparrow r) \end{aligned} (¬pq)(pr)¬(pq)(¬pr)(¬p¬q)¬pr¬pr(pp)r((pp)r)((pp)r)¬(p¬r)p¬rp(rr)

  2. 判断下列逻辑蕴涵式是否成立,给出理由,A,B,C为命题公式。
    (1) A → B ∨ D , B → C ∨ E    ⟹    A → D ∨ E A\to B\lor D,B\to C\lor E\implies A\to D\lor E ABD,BCEADE
    A → D ∨ E A\to D\lor E ADE的一种弄假指派为
    α = [ A B C D E 1 1 1 0 0 ] \alpha= \left[ \begin{matrix} A & B & C & D & E \\ 1 & 1 & 1 & 0 & 0 \end{matrix} \right] α=[A1B1C1D0E0]
    在此指派下
    A → B ∨ D = 1 , B → C ∨ E = 1 A\to B\lor D = 1,B\to C\lor E = 1 ABD=1,BCE=1
    所以存在一种指派弄真左侧,但弄假右侧
    因此,此逻辑蕴含式不成立
    (2) A → B , C → D , E → F    ⟹    A ∧ C ∧ E → B ∧ D ∧ F A\to B,C\to D,E\to F\implies A\land C\land E\to B\land D\land F AB,CD,EFACEBDF
    A ∧ C ∧ E → B ∧ D ∧ F A\land C\land E\to B\land D\land F ACEBDF的弄假指派,
    A ∧ C ∧ E = 1 , B ∧ D ∧ F = 0 A\land C\land E = 1,B\land D\land F = 0 ACE=1,BDF=0,
    得到 A = 1 , B = 1 , C = 1 , B ∧ D ∧ F = 0 A = 1,B = 1,C = 1,B\land D\land F = 0 A=1,B=1,C=1,BDF=0
    A = 1 , B = 1 , C = 1 A = 1,B = 1,C = 1 A=1,B=1,C=1的条件下,要想将左侧弄真,
    则必须满足 D = 1 , E = 1 , F = 1 D=1,E=1,F=1 D=1,E=1,F=1
    B ∧ D ∧ F = 1 B\land D\land F = 1 BDF=1
    所以弄假右侧的指派都不能弄真左侧,
    即弄真左侧的指派都能弄真右侧
    综上,此逻辑蕴含式成立

  3. 在命题演算系统PC中证明.
    (1) ⊢ P C ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) \vdash_{PC}((A\to B)\to (A\to C))\to (A\to (B\to C)) PC((AB)(AC))(A(BC))
    只 需 证 ( A → B ) → ( A → C ) , A , B ⊢ C 演 绎 定 理 只需证(A\to B)\to (A\to C),A,B\vdash C\quad 演绎定理 (AB)(AC),A,BC
    1 ) ( A → B ) → ( A → C ) 前 提 1)(A\to B)\to (A\to C)\quad 前提 1)(AB)(AC)
    2 ) B 前 提 2)B\quad 前提 2)B
    3 ) A → B 定 理 3.1.2 3)A\to B\quad 定理3.1.2 3)AB3.1.2
    4 ) A → C 1 , 3 r m p 4)A\to C\quad 1,3r_{mp} 4)AC1,3rmp
    5 ) A 前 提 5)A\quad 前提 5)A
    6 ) C 4 , 5 r m p 6)C\quad 4,5r_{mp} 6)C4,5rmp
    (2) ⊢ P C ( ( ( A → B ) → B ) → C ) → ( A → C ) \vdash_{PC}(((A\to B)\to B)\to C)\to (A\to C) PC(((AB)B)C)(AC)
    1 ) ( A → B ) → ( A → B ) 定 理 3.1.1 1)(A\to B)\to (A\to B)\quad 定理3.1.1 1)(AB)(AB)3.1.1
    2 ) ( ( A → B ) → ( A → B ) ) → ( A → ( ( A → B ) → B ) ) 前 件 互 换 定 理 2)((A\to B)\to (A\to B))\to (A\to ((A\to B)\to B))\quad 前件互换定理 2)((AB)(AB))(A((AB)B))
    3 ) A → ( ( A → B ) → B ) 1 , 2 r m p 3)A\to ((A\to B)\to B)\quad 1,2r_{mp} 3)A((AB)B)1,2rmp
    4 ) ( A → ( ( A → B ) → B ) ) → ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) 加 后 件 定 理 4)(A\to ((A\to B)\to B))\to ((A\to B)\to (A\to C))\to (A\to (B\to C))\quad 加后件定理 4)(A((AB)B))((AB)(AC))(A(BC))
    5 ) ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) 3 , 4 r m p 5)((A\to B)\to (A\to C))\to (A\to (B\to C))\quad 3,4r_{mp} 5)((AB)(AC))(A(BC))3,4rmp
    (3) A → B , ( C → D ) → ¬ B , A ⊢ P C C A\to B,(C\to D)\to \neg B,A\vdash_{PC}C AB,(CD)¬B,APCC
    1 ) ¬ C → ( C → D ) 定 理 3.1.3 1)\neg C\to (C\to D)\quad 定理3.1.3 1)¬C(CD)3.1.3
    2 ) ¬ ( C → D ) → C 1 逆 否 2)\neg (C\to D)\to C\quad 1逆否 2)¬(CD)C1
    3 ) ( C → D ) → ¬ B 前 提 3)(C\to D)\to \neg B\quad 前提 3)(CD)¬B
    4 ) B → ¬ ( C → D ) 3 逆 否 4)B\to \neg(C\to D)\quad 3逆否 4)B¬(CD)3
    5 ) A → B 前 提 5)A\to B\quad 前提 5)AB
    6 ) A 前 提 6)A\quad 前提 6)A
    7 ) B 5 , 6 r m p 7)B\quad 5,6r_{mp} 7)B5,6rmp
    8 ) ¬ ( C → D ) 4 , 7 r m p 8)\neg(C\to D)\quad 4,7r_{mp} 8)¬(CD)4,7rmp
    9 ) C 2 , 8 r m p 9)C\quad 2,8r_{mp} 9)C2,8rmp
    (4) ⊢ ( A → ¬ ( B → B ) ) → ¬ A \vdash (A\to \neg (B\to B))\to \neg A (A¬(BB))¬A
    1 ) ¬ A → ¬ A 定 理 3.1.1 1)\neg A\to \neg A\quad 定理3.1.1 1)¬A¬A3.1.1
    2 ) B → B 定 理 3.1.1 2)B\to B\quad 定理3.1.1 2)BB3.1.1
    3 ) A → ( B → B ) 2 定 理 3.1.2 3)A\to (B\to B)\quad 2定理3.1.2 3)A(BB)23.1.2
    4 ) ¬ ( B → B ) → ¬ A 3 逆 否 4)\neg (B\to B)\to \neg A\quad 3逆否 4)¬(BB)¬A3
    5 ) ( ¬ A → ¬ A ) → ( ( ¬ ( B → B ) → ¬ A ) → ( ( A → ¬ ( B → B ) ) → ¬ A ) ) 定 理 3.1.14 5)(\neg A\to \neg A)\to ((\neg (B\to B)\to \neg A)\to ((A\to \neg (B\to B))\to \neg A))\quad 定理3.1.14 5)(¬A¬A)((¬(BB)¬A)((A¬(BB))¬A))3.1.14
    6 ) ( A → ¬ ( B → B ) ) → ¬ A 1 , 4 , 5 r m p 6)(A\to \neg (B\to B))\to \neg A\quad 1,4,5r_{mp} 6)(A¬(BB))¬A1,4,5rmp

  4. 在ND中证明。
    (1) ⊢ N D ( A ∨ B → C ) ↔ ( A → C ) ∧ ( B → C ) \vdash_{ND}(A\lor B\to C)\leftrightarrow (A\to C)\land (B\to C) ND(ABC)(AC)(BC)
    先 证 ( A ∨ B → C ) → ( A → C ) ∧ ( B → C ) 先证(A\lor B\to C)\to (A\to C)\land (B\to C) (ABC)(AC)(BC)
    只 需 证 A ∨ B → C ⊢ ( A → C ) ∧ ( B → C ) 演 绎 定 理 只需证A\lor B\to C\vdash (A\to C)\land (B\to C)\quad 演绎定理 ABC(AC)(BC)
    1 ) A ∨ B → C ; A ⊢ A ∨ B → C 公 理 1)A\lor B\to C;A\vdash A\lor B\to C\quad 公理 1)ABC;AABC
    2 ) A ∨ B → C ; A ⊢ A 公 理 2)A\lor B\to C;A\vdash A\quad 公理 2)ABC;AA
    3 ) A ∨ B → C ; A ⊢ A ∨ B 2 ∨ 引 入 3)A\lor B\to C;A\vdash A\lor B\quad 2\lor 引入 3)ABC;AAB2
    4 ) A ∨ B → C ; A ⊢ C 1 , 3 → 消 除 4)A\lor B\to C;A\vdash C\quad 1,3\to消除 4)ABC;AC1,3
    5 ) A ∨ B → C ⊢ A → C 4 → 引 入 5)A\lor B\to C\vdash A\to C\quad 4\to 引入 5)ABCAC4
    6 ) A ∨ B → C ; B ⊢ A ∨ B → C 公 理 6)A\lor B\to C;B\vdash A\lor B\to C\quad 公理 6)ABC;BABC
    7 ) A ∨ B → C ; B ⊢ B 公 理 7)A\lor B\to C;B\vdash B\quad 公理 7)ABC;BB
    8 ) A ∨ B → C ; B ⊢ A ∨ B 7 ∨ 引 入 8)A\lor B\to C;B\vdash A\lor B\quad 7\lor 引入 8)ABC;BAB7
    9 ) A ∨ B → C ; B ⊢ C 6 , 8 → 消 除 9)A\lor B\to C;B\vdash C\quad 6,8\to消除 9)ABC;BC6,8
    10 ) A ∨ B → C ⊢ B → C 9 → 引 入 10)A\lor B\to C\vdash B\to C\quad 9\to 引入 10)ABCBC9
    11 ) A ∨ B → C ⊢ ( A → C ) ∧ ( B → C ) 5 , 10 ∧ 引 入 11)A\lor B\to C\vdash (A\to C)\land (B\to C)\quad 5,10\land 引入 11)ABC(AC)(BC)5,10
    再 证 ( A → C ) ∧ ( B → C ) → ( A ∨ B → C ) 再证(A\to C)\land (B\to C)\to (A\lor B\to C) (AC)(BC)(ABC)
    只 需 证 ( A → C ) ∧ ( B → C ) , A ∨ B ⊢ C 演 绎 定 理 只需证(A\to C)\land (B\to C),A\lor B\vdash C\quad 演绎定理 (AC)(BC),ABC
    1 ) ( A → C ) ∧ ( B → C ) , A ∨ B ⊢ A ∨ B 公 理 1)(A\to C)\land (B\to C),A\lor B\vdash A\lor B\quad 公理 1)(AC)(BC),ABAB
    2 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; A ⊢ ( A → C ) ∧ ( B → C ) 公 理 2)(A\to C)\land (B\to C),A\lor B;A\vdash (A\to C)\land (B\to C)\quad 公理 2)(AC)(BC),AB;A(AC)(BC)
    3 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; A ⊢ A → C 2 ∧ 消 除 3)(A\to C)\land (B\to C),A\lor B;A\vdash A\to C\quad 2\land 消除 3)(AC)(BC),AB;AAC2
    4 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; A ⊢ A 公 理 4)(A\to C)\land (B\to C),A\lor B;A\vdash A\quad 公理 4)(AC)(BC),AB;AA
    5 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; A ⊢ C 3 , 4 → 消 除 5)(A\to C)\land (B\to C),A\lor B;A\vdash C\quad 3,4\to 消除 5)(AC)(BC),AB;AC3,4
    6 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; B ⊢ ( A → C ) ∧ ( B → C ) 公 理 6)(A\to C)\land (B\to C),A\lor B;B\vdash (A\to C)\land (B\to C)\quad 公理 6)(AC)(BC),AB;B(AC)(BC)
    7 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; B ⊢ B → C 6 ∧ 消 除 7)(A\to C)\land (B\to C),A\lor B;B\vdash B\to C\quad 6\land 消除 7)(AC)(BC),AB;BBC6
    8 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; B ⊢ B 公 理 8)(A\to C)\land (B\to C),A\lor B;B\vdash B\quad 公理 8)(AC)(BC),AB;BB
    9 ) ( A → C ) ∧ ( B → C ) , A ∨ B ; B ⊢ C 7 , 8 → 消 除 9)(A\to C)\land (B\to C),A\lor B;B\vdash C\quad 7,8\to 消除 9)(AC)(BC),AB;BC78
    10 ) ( A → C ) ∧ ( B → C ) , A ∨ B ⊢ C 1 , 5 , 9 ∨ 消 除 10)(A\to C)\land (B\to C),A\lor B\vdash C\quad 1,5,9\lor 消除 10)(AC)(BC),ABC1,5,9
    ( A ∨ B → C ) ↔ ( A → C ) ∧ ( B → C ) ↔ 引 入 (A\lor B\to C)\leftrightarrow (A\to C)\land (B\to C)\quad \leftrightarrow 引入 (ABC)(AC)(BC)
    (2) ⊢ N D ( A ∨ B ) ∧ ( B → C ) → A ∨ C \vdash_{ND}(A\lor B)\land (B\to C)\to A\lor C ND(AB)(BC)AC
    只 需 证 ( A ∨ B ) ∧ ( B → C ) ⊢ A ∨ C 演 绎 定 理 只需证(A\lor B)\land (B\to C)\vdash A\lor C\quad 演绎定理 (AB)(BC)AC
    1 ) ( A ∨ B ) ∧ ( B → C ) ⊢ ( A ∨ B ) ∧ ( B → C ) 公 理 1)(A\lor B)\land (B\to C)\vdash (A\lor B)\land (B\to C)\quad 公理 1)(AB)(BC)(AB)(BC)
    2 ) ( A ∨ B ) ∧ ( B → C ) ⊢ A ∨ B 1 ∧ 消 除 2)(A\lor B)\land (B\to C)\vdash A\lor B\quad 1\land 消除 2)(AB)(BC)AB1
    3 ) ( A ∨ B ) ∧ ( B → C ) ; A ⊢ A 公 理 3)(A\lor B)\land (B\to C);A\vdash A\quad 公理 3)(AB)(BC);AA
    4 ) ( A ∨ B ) ∧ ( B → C ) ; A ⊢ A ∨ C 3 ∨ 引 入 4)(A\lor B)\land (B\to C);A\vdash A\lor C\quad 3\lor 引入 4)(AB)(BC);AAC3
    5 ) ( A ∨ B ) ∧ ( B → C ) ; B ⊢ ( A ∨ B ) ∧ ( B → C ) 公 理 5)(A\lor B)\land (B\to C);B\vdash (A\lor B)\land (B\to C)\quad 公理 5)(AB)(BC);B(AB)(BC)
    6 ) ( A ∨ B ) ∧ ( B → C ) ; B ⊢ B → C 5 ∧ 消 除 6)(A\lor B)\land (B\to C);B\vdash B\to C\quad 5\land 消除 6)(AB)(BC);BBC5
    7 ) ( A ∨ B ) ∧ ( B → C ) ; B ⊢ B 公 理 7)(A\lor B)\land (B\to C);B\vdash B\quad 公理 7)(AB)(BC);BB
    8 ) ( A ∨ B ) ∧ ( B → C ) ; B ⊢ C 6 , 7 → 消 除 8)(A\lor B)\land (B\to C);B\vdash C\quad 6,7\to 消除 8)(AB)(BC);BC6,7
    9 ) ( A ∨ B ) ∧ ( B → C ) ; B ⊢ A ∨ C 8 ∨ 引 入 9)(A\lor B)\land (B\to C);B\vdash A\lor C\quad 8\lor 引入 9)(AB)(BC);BAC8
    10 ) ( A ∨ B ) ∧ ( B → C ) ⊢ A ∨ C 1 , 4 , 9 ∨ 消 除 10)(A\lor B)\land (B\to C)\vdash A\lor C\quad 1,4,9\lor 消除 10)(AB)(BC)AC1,4,9

  5. 在FC中证明。
    ⊢ F C ∀ v ( A → B ) ↔ ( A → ∀ v B ) , v 在 A 中 无 自 由 出 现 \vdash_{FC} \forall v(A\to B)\leftrightarrow (A\to \forall vB),v在A中无自由出现 FCv(AB)(AvB),vA
    先 证 ∀ v ( A → B ) → ( A → ∀ v B ) 先证\forall v(A\to B)\to (A\to \forall vB) v(AB)(AvB)
    只 需 证 ∀ v ( A → B ) , A ⊢ ∀ v B 演 绎 定 理 只需证\forall v(A\to B),A\vdash \forall vB\quad 演绎定理 v(AB),AvB
    1 ) ∀ v ( A → B ) , A ⊢ ∀ v ( A → B ) 前 提 1)\forall v(A\to B),A\vdash \forall v(A\to B)\quad 前提 1)v(AB),Av(AB)
    2 ) ∀ v ( A → B ) , A ⊢ ∀ v ( A → B ) → ( ∀ v A → ∀ v B ) A X 3 2)\forall v(A\to B),A\vdash \forall v(A\to B)\to (\forall vA\to \forall vB)\quad AX3 2)v(AB),Av(AB)(vAvB)AX3
    3 ) ∀ v ( A → B ) , A ⊢ ∀ v A → ∀ v B 1 , 2 r m p 3)\forall v(A\to B),A\vdash \forall vA\to \forall vB\quad 1,2r_{mp} 3)v(AB),AvAvB1,2rmp
    4 ) ∀ v ( A → B ) , A ⊢ A 前 提 4)\forall v(A\to B),A\vdash A\quad 前提 4)v(AB),AA
    5 ) ∀ v ( A → B ) , A ⊢ ∀ v A 4 全 称 推 广 5)\forall v(A\to B),A\vdash \forall vA\quad 4全称推广 5)v(AB),AvA4广
    6 ) ∀ v ( A → B ) , A ⊢ ∀ v B 3 , 5 r m p 6)\forall v(A\to B),A\vdash \forall vB\quad 3,5r_{mp} 6)v(AB),AvB3,5rmp
    再 证 ( A → ∀ v B ) → ∀ v ( A → B ) 再证(A\to \forall vB)\to \forall v(A\to B) (AvB)v(AB)
    只 需 证 A → ∀ v B ⊢ ∀ v ( A → B ) 演 绎 定 理 只需证A\to \forall vB\vdash \forall v(A\to B)\quad 演绎定理 AvBv(AB)
    1 ) A → ∀ v B ⊢ A → ∀ v B 前 提 1)A\to \forall vB\vdash A\to \forall vB\quad 前提 1)AvBAvB
    2 ) ∀ v B → B 定 理 5.2.1 2)\forall vB\to B\quad 定理5.2.1 2)vBB5.2.1
    3 ) A → ∀ v B ⊢ A → B 1 , 2 三 段 论 3)A\to \forall vB\vdash A\to B\quad 1,2三段论 3)AvBAB1,2
    4 ) A → ∀ v B ⊢ ∀ v ( A → B ) 3 全 称 推 广 4)A\to \forall vB\vdash \forall v(A\to B)\quad 3全称推广 4)AvBv(AB)3广

  6. 找出语义指派使得 ( ∀ v ) P ( v , f ( v , a ) ) ∧ P ( v , a ) → ∀ v P ( v , v ) (\forall v)P(v,f(v,a))\land P(v,a)\to \forall vP(v,v) (v)P(v,f(v,a))P(v,a)vP(v,v)为真。
    令 U = { 1 , 2 } , P ˉ : U → { T , F } , a ˉ = 1 , v ˉ = 1 令U=\{1,2\},\bar{P}:U\to \{T,F\},\bar{a}=1,\bar{v}=1 U={1,2},Pˉ:U{T,F},aˉ=1,vˉ=1
    f ˉ ( 1 , 1 ) = 1 , f ˉ ( 1 , 2 ) = 1 , f ˉ ( 2 , 1 ) = 2 , f ˉ ( 2 , 2 ) = 2 \bar{f}(1,1)=1,\bar{f}(1,2)=1,\bar{f}(2,1)=2,\bar{f}(2,2)=2 fˉ(1,1)=1,fˉ(1,2)=1,fˉ(2,1)=2,fˉ(2,2)=2
    P ˉ ( 1 , 1 ) = F , P ˉ ( 1 , 2 ) = T , P ˉ ( 2 , 1 ) = T , P ˉ ( 2 , 2 ) = F \bar{P}(1,1)=F,\bar{P}(1,2)=T,\bar{P}(2,1)=T,\bar{P}(2,2)=F Pˉ(1,1)=F,Pˉ(1,2)=T,Pˉ(2,1)=T,Pˉ(2,2)=F
    那 么 那么
    P ( v , f ( v , a ) ) ∧ P ( v , a ) ‾ = P ˉ ( v ˉ , f ( v , a ) ‾ ∧ P ˉ ( v ˉ , a ˉ ) = P ˉ ( 1 , f ˉ ( v ˉ , a ˉ ) ) ∧ P ˉ ( 1 , 1 ) = P ˉ ( 1 , f ˉ ( 1 , 1 ) ) ∧ P ˉ ( 1 , 1 ) = P ˉ ( 1 , 1 ) ∧ F = F \begin{aligned} \overline{P(v,f(v,a))\land P(v,a)}&= \bar{P}(\bar{v},\overline{f(v,a)}\land \bar{P}(\bar{v},\bar{a}) \\ &= \bar{P}(1,\bar{f}(\bar{v},\bar{a}))\land \bar{P}(1,1) \\ &= \bar{P}(1,\bar{f}(1,1))\land \bar{P}(1,1) \\ &= \bar{P}(1,1)\land F\\ &= F \end{aligned} P(v,f(v,a))P(v,a)=Pˉ(vˉ,f(v,a)Pˉ(vˉ,aˉ=Pˉ(1,fˉ(vˉ,aˉ))Pˉ(1,1=Pˉ(1,fˉ(1,1))Pˉ(1,1=Pˉ(1,1)F=F
    此 时 ( ∀ v ) P ( v , f ( v , a ) ) ∧ P ( v , a ) → ∀ v P ( v , v ) 为 真 此时(\forall v)P(v,f(v,a))\land P(v,a)\to \forall vP(v,v)为真 (v)P(v,f(v,a))P(v,a)vP(v,v)

  7. 将“班级里一定有一个人,如果她抽烟,则班级里所有同学都抽烟”形式化并证明。
    用 P ( x ) 表 示 x 抽 烟 , 则 公 式 为 用P(x)表示x抽烟,则公式为 P(x)x
    ⊢ ∃ v ( P ( v ) → ∀ v P ( v ) ) , 即 ⊢ ¬ ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) \vdash \exists v(P(v)\to \forall vP(v)),即\vdash \neg \forall v\neg (P(v)\to \forall vP(v)) v(P(v)vP(v)),¬v¬(P(v)vP(v))
    1 ) ¬ P ( v ) → ( P ( v ) → ∀ v P ( v ) ) 定 理 3.1.3 1)\neg P(v)\to (P(v)\to \forall vP(v))\quad 定理3.1.3 1)¬P(v)(P(v)vP(v))3.1.3
    2 ) ¬ ( P ( v ) → ∀ v P ( v ) ) → P ( v ) 1 逆 否 2)\neg (P(v)\to \forall vP(v))\to P(v)\quad 1逆否 2)¬(P(v)vP(v))P(v)1
    3 ) ∀ v P ( v ) → ( P ( v ) → ∀ v P ( v ) ) A X 1 3)\forall vP(v)\to (P(v)\to \forall vP(v))\quad AX1 3)vP(v)(P(v)vP(v))AX1
    4 ) ¬ ( P ( v ) → ∀ v P ( v ) ) → ¬ ∀ v P ( v ) 3 逆 否 4)\neg (P(v)\to \forall vP(v))\to \neg \forall vP(v)\quad 3逆否 4)¬(P(v)vP(v))¬vP(v)3
    5 ) ∀ v ( ¬ ( P ( v ) → ∀ v P ( v ) ) → P ( v ) ) 2 全 称 推 广 5)\forall v(\neg (P(v)\to \forall vP(v))\to P(v))\quad 2全称推广 5)v(¬(P(v)vP(v))P(v))2广
    6 ) ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) → ∀ v P ( v ) A X 4 , 5 r m p 6)\forall v\neg (P(v)\to \forall vP(v))\to \forall vP(v)\quad AX4,5r_{mp} 6)v¬(P(v)vP(v))vP(v)AX4,5rmp
    7 ) ∀ v ( ¬ ( P ( v ) → ∀ v P ( v ) ) → ¬ ∀ v P ( v ) ) 4 全 称 推 广 7)\forall v(\neg (P(v)\to \forall vP(v))\to \neg \forall vP(v))\quad 4全称推广 7)v(¬(P(v)vP(v))¬vP(v))4广
    8 ) ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) → ∀ v ¬ ∀ v P ( v ) A X 4 , 7 r m p 8)\forall v\neg (P(v)\to \forall vP(v))\to \forall v\neg \forall vP(v)\quad AX4,7r_{mp} 8)v¬(P(v)vP(v))v¬vP(v)AX4,7rmp
    9 ) ∅ ; ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) ⊢ ∀ v P ( v ) 6 演 绎 定 理 9)\varnothing;\forall v\neg (P(v)\to \forall vP(v))\vdash \forall vP(v)\quad 6演绎定理 9);v¬(P(v)vP(v))vP(v)6
    10 ) ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) ⊢ ∀ v ¬ ∀ v P ( v ) 8 演 绎 定 理 10)\forall v\neg (P(v)\to \forall vP(v))\vdash \forall v\neg \forall vP(v)\quad 8 演绎定理 10)v¬(P(v)vP(v))v¬vP(v)8
    11 ) ∀ v ¬ ∀ v P ( v ) → ¬ ∀ v P ( v ) 定 理 5.2.1 11)\forall v\neg \forall vP(v)\to \neg \forall vP(v)\quad 定理5.2.1 11)v¬vP(v)¬vP(v)5.2.1
    12 ) ∅ ; ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) ⊢ ¬ ∀ v P ( v ) 10 , 11 三 段 论 12)\varnothing;\forall v\neg (P(v)\to \forall vP(v))\vdash \neg \forall vP(v)\quad 10,11三段论 12);v¬(P(v)vP(v))¬vP(v)10,11
    13 ) ⊢ ¬ ∀ v ¬ ( P ( v ) → ∀ v P ( v ) ) 10 , 12 反 证 法 13)\vdash \neg \forall v\neg (P(v)\to \forall vP(v))\quad 10,12反证法 13)¬v¬(P(v)vP(v))10,12

  • 22
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值