2015年哈工大数理逻辑A期末考试参考答案(2)

五 、 在 命 题 演 算 系 统 P C 中 证 明 : ( 20 分 ) 五、在命题演算系统 PC 中证明:(20 分) PC20
( 1 ) ⊢ ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) (1)⊢ ((A → B) → (A → C)) → (A → (B → C)) (1)((AB)(AC))(A(BC))
1. B → ( A → B ) A 1 1.B\to (A\to B)\quad A1 1.B(AB)A1
2. ¬ ( A → B ) → ¬ B 1 逆 否 2.\neg (A\to B)\to \neg B\quad 1逆否 2.¬(AB)¬B1
3. ¬ B → ( B → ( A → C ) ) 定 理 3.1.3 3.\neg B\to (B\to (A\to C))\quad 定理3.1.3 3.¬B(B(AC))3.1.3
4. ( B → ( A → C ) ) → ( A → ( B → C ) ) 前 件 互 换 定 理 4.(B\to (A\to C))\to (A\to (B\to C))\quad 前件互换定理 4.(B(AC))(A(BC))
5. ¬ ( A → B ) → ( B → ( A → C ) ) 2 , 3 , 4 传 递 5.\neg (A\to B)\to (B\to (A\to C))\quad 2,3,4传递 5.¬(AB)(B(AC))2,3,4
6. C → ( B → C ) A 1 6.C\to (B\to C)\quad A1 6.C(BC)A1
7. ( A → C ) → ( A → ( B → C ) ) 6 , 加 前 件 定 理 r m p 7.(A\to C)\to (A\to (B\to C))\quad 6,加前件定理r_{mp} 7.(AC)(A(BC))6,rmp
8. ( ¬ ( A → B ) → ( B → ( A → C ) ) ) → ( ( ( A → C ) → ( A → ( B → C ) ) ) → ( ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) ) ) 定 理 3.1.14 8.(\neg (A\to B)\to (B\to (A\to C)))\to (((A\to C)\to (A\to (B\to C)))\to (((A → B) → (A → C)) → (A → (B → C))))\quad 定理3.1.14 8.(¬(AB)(B(AC)))(((AC)(A(BC)))(((AB)(AC))(A(BC))))3.1.14
9. ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) 5 , 6 , 8 r m p 9.((A → B) → (A → C)) → (A → (B → C))\quad 5,6,8r_{mp} 9.((AB)(AC))(A(BC))5,6,8rmp
( 2 ) ⊢ B → ( ( B → C ) → ( ¬ A → C ) ) (2)⊢ B → ((B → C) → (¬A → C)) (2)B((BC)(¬AC))
1. C → ( ¬ A → C ) A 1 1.C\to (\neg A\to C)\quad A1 1.C(¬AC)A1
2. ( B → C ) → ( B → ( ¬ A → C ) ) 1 , 加 前 件 定 理 r m p 2.(B\to C)\to (B\to (\neg A\to C))\quad 1,加前件定理r_{mp} 2.(BC)(B(¬AC))1,rmp
3. B → ( ( B → C ) → ( ¬ A → C ) ) 2 , 前 件 互 换 定 理 r m p 3.B\to ((B\to C)\to (\neg A\to C))\quad 2,前件互换定理r_{mp} 3.B((BC)(¬AC))2,rmp
( 3 ) ⊢ ( A → B ) → ( ¬ B → ( A → ¬ A ) ) (3)⊢ (A → B) → (¬B → (A → ¬A)) (3)(AB)(¬B(A¬A))
1. ¬ B → ( B → ¬ A ) 定 理 3.1.3 1.\neg B\to (B\to \neg A)\quad 定理3.1.3 1.¬B(B¬A)3.1.3
2. ( B → ¬ A ) → ( ( A → B ) → ( A → ¬ A ) ) 加 前 件 定 理 2.(B\to \neg A)\to ((A\to B)\to (A\to \neg A))\quad 加前件定理 2.(B¬A)((AB)(A¬A))
3. ¬ B → ( ( A → B ) → ( A → ¬ A ) ) 1 , 2 三 段 论 3.\neg B\to ((A\to B)\to (A\to \neg A))\quad 1,2三段论 3.¬B((AB)(A¬A))1,2
4. ( A → B ) → ( ¬ B → ( A → ¬ A ) ) 3 , 前 件 互 换 定 理 r m p 4.(A\to B)\to (\neg B\to (A\to \neg A))\quad 3,前件互换定理r_{mp} 4.(AB)(¬B(A¬A))3,rmp
( 4 ) ¬ ( ( A → B ) → ¬ ( B → A ) ) , A ⊢ B (4)¬((A → B) → ¬(B → A)),A ⊢ B (4)¬((AB)¬(BA)),AB
1. ¬ ( A → B ) → ( ( A → B ) → ¬ ( B → A ) ) 定 理 3.1.3 1.\neg (A\to B)\to ((A\to B)\to \neg (B\to A))\quad 定理3.1.3 1.¬(AB)((AB)¬(BA))3.1.3
2. ¬ ( ( A → B ) → ¬ ( B → A ) ) → ( A → B ) 1 逆 否 2.\neg ((A\to B)\to \neg (B\to A))\to (A\to B)\quad 1逆否 2.¬((AB)¬(BA))(AB)1
3. ¬ ( ( A → B ) → ¬ ( B → A ) ) , A ⊢ ¬ ( ( A → B ) → ¬ ( B → A ) ) 前 提 3.¬((A → B) → ¬(B → A)),A ⊢ ¬((A → B) → ¬(B → A))\quad 前提 3.¬((AB)¬(BA)),A¬((AB)¬(BA))
4. ¬ ( ( A → B ) → ¬ ( B → A ) ) , A ⊢ A → B 2 , 3 r m p 4.¬((A → B) → ¬(B → A)),A ⊢A\to B\quad 2,3r_{mp} 4.¬((AB)¬(BA)),AAB2,3rmp
5. ¬ ( ( A → B ) → ¬ ( B → A ) ) , A ⊢ A 前 提 5.¬((A → B) → ¬(B → A)),A ⊢ A\quad 前提 5.¬((AB)¬(BA)),AA
6. ¬ ( ( A → B ) → ¬ ( B → A ) ) , A ⊢ B 4 , 5 r m p 6.¬((A → B) → ¬(B → A)),A ⊢ B\quad 4,5r_{mp} 6.¬((AB)¬(BA)),AB4,5rmp
六 、 在 N D 中 证 明 : ( 10 分 ) 六、在 ND 中证明:(10 分) ND10
( 1 ) ⊢ ( ( A → B ) → C ) → ( B → C ) (1)⊢ ((A → B) → C) → (B → C) (1)((AB)C)(BC)
只 需 证 ( A → B ) → C , B ⊢ C 演 绎 定 理 只需证(A\to B)\to C,B\vdash C\quad 演绎定理 (AB)C,BC
1. ( A → B ) → C , B ; A ⊢ B 公 理 1.(A\to B)\to C,B;A\vdash B\quad 公理 1.(AB)C,B;AB
2. ( A → B ) → C , B ⊢ A → B 1 → 引 入 2.(A\to B)\to C,B\vdash A\to B\quad 1\to引入 2.(AB)C,BAB1
3. ( A → B ) → C , B ⊢ ( A → B ) → C 公 理 3.(A\to B)\to C,B\vdash (A\to B)\to C\quad 公理 3.(AB)C,B(AB)C
4. ( A → B ) → C , B ⊢ C 2 , 3 → 消 除 4.(A\to B)\to C,B\vdash C\quad 2,3\to 消除 4.(AB)C,BC2,3
( 2 ) ⊢ ( B → ¬ C ) → ( ¬ A → ( B → ¬ ( ¬ A → C ) ) ) (2)⊢ (B → ¬C) → (¬A → (B → ¬(¬A → C))) (2)(B¬C)(¬A(B¬(¬AC)))
只 需 证 B → ¬ C , ¬ A , B ⊢ ¬ ( ¬ A → C ) 演 绎 定 理 只需证B\to \neg C,\neg A,B\vdash \neg (\neg A\to C)\quad 演绎定理 B¬C,¬A,B¬(¬AC)
1. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ ¬ A → C 公 理 1.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg A\to C\quad 公理 1.B¬C,¬A,B;¬AC¬AC
2. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ ¬ A 公 理 2.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg A\quad 公理 2.B¬C,¬A,B;¬AC¬A
3. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ C 1 , 2 → 消 除 3.B\to \neg C,\neg A,B;\neg A\to C\vdash C\quad 1,2\to 消除 3.B¬C,¬A,B;¬ACC1,2
4. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ B → ¬ C 公 理 4.B\to \neg C,\neg A,B;\neg A\to C\vdash B\to \neg C\quad 公理 4.B¬C,¬A,B;¬ACB¬C
5. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ B 公 理 5.B\to \neg C,\neg A,B;\neg A\to C\vdash B\quad 公理 5.B¬C,¬A,B;¬ACB
6. B → ¬ C , ¬ A , B ; ¬ A → C ⊢ ¬ C 4 , 5 → 消 除 6.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg C\quad 4,5\to 消除 6.B¬C,¬A,B;¬AC¬C4,5
7. B → ¬ C , ¬ A , B ; ⊢ ¬ ( ¬ A → C ) 3 , 6 ¬ 引 入 7.B\to \neg C,\neg A,B;\vdash \neg (\neg A\to C)\quad 3,6\neg 引入 7.B¬C,¬A,B;¬(¬AC)3,6¬
七 、 在 F C 中 证 明 : ( 20 分 七、在 FC 中证明:(20 分 FC20
( 1 ) ⊢ ( ∃ x A → ∀ x ¬ B ) → ∀ x ( A → ¬ B ) (1)⊢ (∃xA → ∀x¬B) → ∀x(A → ¬B) (1)(xAx¬B)x(A¬B)
根 据 全 程 推 广 定 理 及 演 绎 定 理 , 只 需 证 ∃ x A → ∀ x ¬ B ⊢ A → ¬ B 根据全程推广定理及演绎定理,只需证\exists xA\to \forall x\neg B\vdash A\to \neg B 广,xAx¬BA¬B
1. ∃ x A → ∀ x ¬ B 前 提 1.\exists xA\to \forall x\neg B\quad 前提 1.xAx¬B
2. ∀ x ¬ B → ¬ B 定 理 5.1.1 2.\forall x\neg B\to \neg B\quad 定理5.1.1 2.x¬B¬B5.1.1
3. ∃ A → ¬ B 1 , 2 三 段 论 3.\exists A\to \neg B\quad 1,2三段论 3.A¬B1,2
4. A → ∃ x A 定 理 5.2.2 4.A\to \exists xA\quad 定理5.2.2 4.AxA5.2.2
5. A → ¬ B 3 , 4 三 段 论 5.A\to \neg B\quad 3,4三段论 5.A¬B3,4
6. ∀ x ( A → ¬ B ) 5 全 称 推 广 6.\forall x(A\to \neg B)\quad 5全称推广 6.x(A¬B)5广
( 2 ) ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ⊢ ∃ x ¬ ( Q ( x ) → ¬ R ( x ) ) (2)∀x(P(x) → Q(x)),¬∀x(P(x) → ¬R(x)) ⊢ ∃x¬(Q(x) → ¬R(x)) (2)x(P(x)Q(x)),¬x(P(x)¬R(x))x¬(Q(x)¬R(x))
方 法 1 : 方法1: 1
因 为 ∃ x ¬ ( Q ( x ) → ¬ R ( x ) )    ⟺    ¬ ∀ x ( Q ( x ) → ¬ R ( x ) ) , 使 用 反 证 法 因为\exists x\neg (Q(x)\to \neg R(x))\iff \neg \forall x(Q(x)\to \neg R(x)),使用反证法 x¬(Q(x)¬R(x))¬x(Q(x)¬R(x)),使
1. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ ∀ x ( Q ( x ) → ¬ R ( x ) ) 前 提 1.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(Q(x)\to \neg R(x))\quad 前提 1.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))x(Q(x)¬R(x))
2. ∀ x ( Q ( x ) → ¬ R ( x ) ) → ( Q ( x ) → ¬ R ( x ) ) 定 理 5.1.1 2.\forall x(Q(x)\to \neg R(x))\to (Q(x)\to \neg R(x))\quad 定理5.1.1 2.x(Q(x)¬R(x))(Q(x)¬R(x))5.1.1
3. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ Q ( x ) → ¬ R ( x ) 1 , 2 r m p 3.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash Q(x)\to \neg R(x)\quad 1,2r_{mp} 3.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))Q(x)¬R(x)1,2rmp
4. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ ∀ x ( P ( x ) → Q ( x ) ) 前 提 4.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(P(x)\to Q(x))\quad 前提 4.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))x(P(x)Q(x))
5. ∀ x ( P ( x ) → Q ( x ) ) → ( P ( x ) → Q ( x ) ) 定 理 5.1.1 5.\forall x(P(x)\to Q(x))\to (P(x)\to Q(x))\quad 定理5.1.1 5.x(P(x)Q(x))(P(x)Q(x))5.1.1
6. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ P ( x ) → Q ( x ) 5 , 6 r m p 6.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash P(x)\to Q(x)\quad 5,6r_{mp} 6.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))P(x)Q(x)5,6rmp
7. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ P ( x ) → ¬ R ( x ) 3 , 6 三 段 论 7.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash P(x)\to \neg R(x)\quad 3,6三段论 7.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))P(x)¬R(x)3,6
8. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ ∀ x ( P ( x ) → ¬ R ( x ) ) 7 定 理 5.2.5 8.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(P(x)\to \neg R(x))\quad 7定理5.2.5 8.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))x(P(x)¬R(x))75.2.5
9. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ; ∀ x ( Q ( x ) → ¬ R ( x ) ) ⊢ ¬ ∀ x ( P ( x ) → Q ( x ) ) 前 提 9.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \neg \forall x (P(x)\to Q(x))\quad 前提 9.x(P(x)Q(x)),¬x(P(x)¬R(x));x(Q(x)¬R(x))¬x(P(x)Q(x))
10. ∀ x ( P ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → ¬ R ( x ) ) ⊢ ¬ ∀ x ( Q ( x ) → ¬ R ( x ) ) 8 , 9 反 证 法 10.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x))\vdash \neg \forall x(Q(x)\to \neg R(x))\quad 8,9反证法 10.x(P(x)Q(x)),¬x(P(x)¬R(x))¬x(Q(x)¬R(x))8,9
八 、 “ 大 学 里 的 学 生 不 是 本 科 生 就 是 研 究 生 , 有 的 学 生 是 高 材 生 , J o h n 不 是 研 究 生 , 但 是 高 材 生 , 则 如 果 J o h n 是 大 学 里 的 学 生 必 是 本 科 生 。 ” 八、“大学里的学生不是本科生就是研究生,有的学生是高材生,John不是研究生,但是高材生,则如果John是大学里的学生必是本科生。” JohnJohn
请 将 上 述 逻 辑 推 理 用 谓 词 公 式 表 示 出 来 , 并 在 F C 中 证 明 其 推 理 的 正 确 性 。 ( 15 分 ) 请将上述逻辑推理用谓词公式表示出来,并在FC中证明其推理的正确性。(15分) FC15
令 : 谓 词 S ( x ) : x 是 大 学 里 的 学 生 令:谓词S(x):x是大学里的学生 S(x):x
谓 词 B ( x ) : x 是 本 科 生 谓词B(x):x是本科生 B(x):x
谓 词 G ( x ) : x 是 研 究 生 谓词G(x):x是研究生 G(x):x
谓 词 P ( x ) : x 是 高 材 生 谓词P(x):x是高材生 P(x):x
则 上 述 语 句 形 式 化 为 : 则上述语句形式化为:
( 1 ) ∀ x ( S ( x ) → B ( x ) ⊕ G ( x ) ) (1)\forall x(S(x)\to B(x)\oplus G(x)) (1)x(S(x)B(x)G(x))
( 2 ) ∃ x P ( x ) (2)\exists xP(x) (2)xP(x)
( 3 ) ¬ G ( J o h n ) ∧ P ( J o h n ) (3)\neg G(John)\land P(John) (3)¬G(John)P(John)
( 4 ) S ( J o h n ) → B ( J o h n ) (4)S(John)\to B(John) (4)S(John)B(John)
令 公 式 集 Γ = { ∀ x ( S ( x ) → B ( x ) ⊕ G ( x ) ) , ∃ x P ( x ) , ¬ G ( J o h n ) ∧ P ( J o h n ) , S ( J o h n ) } 令公式集\Gamma = \{ \forall x(S(x)\to B(x)\oplus G(x)),\exists xP(x),\neg G(John)\land P(John),S(John) \} Γ={x(S(x)B(x)G(x)),xP(x),¬G(John)P(John),S(John)}
只 需 证 Γ ⊢ B ( J o h n ) 演 绎 定 理 只需证\Gamma\vdash B(John)\quad 演绎定理 ΓB(John)
使 用 反 证 法 使用反证法 使
1. Γ ; ¬ B ( J o h n ) ⊢ ¬ G ( J o h n ) ∧ P ( J o h n ) 前 提 1.\Gamma;\neg B(John)\vdash \neg G(John)\land P(John)\quad 前提 1.Γ;¬B(John)¬G(John)P(John)
2. ¬ G ( J o h n ) ∧ P ( J o h n ) → ¬ G ( J o h n ) 定 理 3.1.16 2.\neg G(John)\land P(John)\to \neg G(John)\quad 定理3.1.16 2.¬G(John)P(John)¬G(John)3.1.16
3. Γ ; ¬ B ( J o h n ) ⊢ ¬ G ( J o h n ) 1 , 2 r m p 3.\Gamma;\neg B(John)\vdash \neg G(John)\quad 1,2r_{mp} 3.Γ;¬B(John)¬G(John)1,2rmp
4. Γ ; ¬ B ( J o h n ) ⊢ ¬ B ( J o h n ) → ¬ G ( J o h n ) 定 理 3.1.2 4.\Gamma;\neg B(John)\vdash \neg B(John)\to \neg G(John)\quad 定理3.1.2 4.Γ;¬B(John)¬B(John)¬G(John)3.1.2
5. Γ ; ¬ B ( J o h n ) ⊢ G ( J o h n ) → B ( J o h n ) 4 逆 否 5.\Gamma;\neg B(John)\vdash G(John)\to B(John)\quad 4逆否 5.Γ;¬B(John)G(John)B(John)4
6. Γ ; ¬ B ( J o h n ) ⊢ ¬ B ( J o h n ) 前 提 6.\Gamma;\neg B(John)\vdash \neg B(John)\quad 前提 6.Γ;¬B(John)¬B(John)
7. Γ ; ¬ B ( J o h n ) ⊢ ¬ G ( J o h n ) → ¬ B ( J o h n ) 定 理 3.1.2 7.\Gamma;\neg B(John)\vdash \neg G(John)\to \neg B(John)\quad 定理3.1.2 7.Γ;¬B(John)¬G(John)¬B(John)3.1.2
8. Γ ; ¬ B ( J o h n ) ⊢ B ( J o h n ) → G ( J o h n ) 7 逆 否 8.\Gamma;\neg B(John)\vdash B(John)\to G(John)\quad 7逆否 8.Γ;¬B(John)B(John)G(John)7
9. Γ ; ¬ B ( J o h n ) ⊢ B ( J o h n ) ↔ G ( J o h n ) 由 5 , 8 可 得 9.\Gamma;\neg B(John)\vdash B(John)\leftrightarrow G(John)\quad 由5,8可得 9.Γ;¬B(John)B(John)G(John)5,8
10. Γ ; ¬ B ( J o h n ) ⊢ ∀ x ( S ( x ) → B ( x ) ⊕ G ( x ) ) 前 提 10.\Gamma;\neg B(John)\vdash \forall x(S(x)\to B(x)\oplus G(x))\quad 前提 10.Γ;¬B(John)x(S(x)B(x)G(x))
11. ∀ x ( S ( x ) → B ( x ) ⊕ G ( x ) ) → ( S ( J o h n ) → B ( J o h n ) ⊕ G ( J o h n ) ) 定 理 5.2.1 11.\forall x(S(x)\to B(x)\oplus G(x))\to (S(John)\to B(John)\oplus G(John))\quad 定理5.2.1 11.x(S(x)B(x)G(x))(S(John)B(John)G(John))5.2.1
12. Γ ; ¬ B ( J o h n ) ⊢ S ( J o h n ) → B ( J o h n ) ⊕ G ( J o h n ) 12.\Gamma;\neg B(John)\vdash S(John)\to B(John)\oplus G(John) 12.Γ;¬B(John)S(John)B(John)G(John)
13. Γ ; ¬ B ( J o h n ) ⊢ S ( J o h n ) 前 提 13.\Gamma;\neg B(John)\vdash S(John)\quad 前提 13.Γ;¬B(John)S(John)
14. Γ ; ¬ B ( J o h n ) ⊢ B ( J o h n ) ⊕ G ( J o h n ) 12 , 13 r m p 14.\Gamma;\neg B(John)\vdash B(John)\oplus G(John)\quad 12,13r_{mp} 14.Γ;¬B(John)B(John)G(John)12,13rmp
15. Γ ; ¬ B ( J o h n ) ⊢ ¬ ( B ( J o h n ) ↔ G ( J o h n ) ) 14 异 或 同 或 转 换 15.\Gamma;\neg B(John)\vdash \neg (B(John)\leftrightarrow G(John))\quad 14异或同或转换 15.Γ;¬B(John)¬(B(John)G(John))14
16. Γ ⊢ B ( J o h n ) 9 , 15 反 证 法 16.\Gamma\vdash B(John)\quad 9,15反证法 16.ΓB(John)9,15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值