五
、
在
命
题
演
算
系
统
P
C
中
证
明
:
(
20
分
)
五、在命题演算系统 PC 中证明:(20 分)
五、在命题演算系统PC中证明:(20分)
(
1
)
⊢
(
(
A
→
B
)
→
(
A
→
C
)
)
→
(
A
→
(
B
→
C
)
)
(1)⊢ ((A → B) → (A → C)) → (A → (B → C))
(1)⊢((A→B)→(A→C))→(A→(B→C))
1.
B
→
(
A
→
B
)
A
1
1.B\to (A\to B)\quad A1
1.B→(A→B)A1
2.
¬
(
A
→
B
)
→
¬
B
1
逆
否
2.\neg (A\to B)\to \neg B\quad 1逆否
2.¬(A→B)→¬B1逆否
3.
¬
B
→
(
B
→
(
A
→
C
)
)
定
理
3.1.3
3.\neg B\to (B\to (A\to C))\quad 定理3.1.3
3.¬B→(B→(A→C))定理3.1.3
4.
(
B
→
(
A
→
C
)
)
→
(
A
→
(
B
→
C
)
)
前
件
互
换
定
理
4.(B\to (A\to C))\to (A\to (B\to C))\quad 前件互换定理
4.(B→(A→C))→(A→(B→C))前件互换定理
5.
¬
(
A
→
B
)
→
(
B
→
(
A
→
C
)
)
2
,
3
,
4
传
递
5.\neg (A\to B)\to (B\to (A\to C))\quad 2,3,4传递
5.¬(A→B)→(B→(A→C))2,3,4传递
6.
C
→
(
B
→
C
)
A
1
6.C\to (B\to C)\quad A1
6.C→(B→C)A1
7.
(
A
→
C
)
→
(
A
→
(
B
→
C
)
)
6
,
加
前
件
定
理
r
m
p
7.(A\to C)\to (A\to (B\to C))\quad 6,加前件定理r_{mp}
7.(A→C)→(A→(B→C))6,加前件定理rmp
8.
(
¬
(
A
→
B
)
→
(
B
→
(
A
→
C
)
)
)
→
(
(
(
A
→
C
)
→
(
A
→
(
B
→
C
)
)
)
→
(
(
(
A
→
B
)
→
(
A
→
C
)
)
→
(
A
→
(
B
→
C
)
)
)
)
定
理
3.1.14
8.(\neg (A\to B)\to (B\to (A\to C)))\to (((A\to C)\to (A\to (B\to C)))\to (((A → B) → (A → C)) → (A → (B → C))))\quad 定理3.1.14
8.(¬(A→B)→(B→(A→C)))→(((A→C)→(A→(B→C)))→(((A→B)→(A→C))→(A→(B→C))))定理3.1.14
9.
(
(
A
→
B
)
→
(
A
→
C
)
)
→
(
A
→
(
B
→
C
)
)
5
,
6
,
8
r
m
p
9.((A → B) → (A → C)) → (A → (B → C))\quad 5,6,8r_{mp}
9.((A→B)→(A→C))→(A→(B→C))5,6,8rmp
(
2
)
⊢
B
→
(
(
B
→
C
)
→
(
¬
A
→
C
)
)
(2)⊢ B → ((B → C) → (¬A → C))
(2)⊢B→((B→C)→(¬A→C))
1.
C
→
(
¬
A
→
C
)
A
1
1.C\to (\neg A\to C)\quad A1
1.C→(¬A→C)A1
2.
(
B
→
C
)
→
(
B
→
(
¬
A
→
C
)
)
1
,
加
前
件
定
理
r
m
p
2.(B\to C)\to (B\to (\neg A\to C))\quad 1,加前件定理r_{mp}
2.(B→C)→(B→(¬A→C))1,加前件定理rmp
3.
B
→
(
(
B
→
C
)
→
(
¬
A
→
C
)
)
2
,
前
件
互
换
定
理
r
m
p
3.B\to ((B\to C)\to (\neg A\to C))\quad 2,前件互换定理r_{mp}
3.B→((B→C)→(¬A→C))2,前件互换定理rmp
(
3
)
⊢
(
A
→
B
)
→
(
¬
B
→
(
A
→
¬
A
)
)
(3)⊢ (A → B) → (¬B → (A → ¬A))
(3)⊢(A→B)→(¬B→(A→¬A))
1.
¬
B
→
(
B
→
¬
A
)
定
理
3.1.3
1.\neg B\to (B\to \neg A)\quad 定理3.1.3
1.¬B→(B→¬A)定理3.1.3
2.
(
B
→
¬
A
)
→
(
(
A
→
B
)
→
(
A
→
¬
A
)
)
加
前
件
定
理
2.(B\to \neg A)\to ((A\to B)\to (A\to \neg A))\quad 加前件定理
2.(B→¬A)→((A→B)→(A→¬A))加前件定理
3.
¬
B
→
(
(
A
→
B
)
→
(
A
→
¬
A
)
)
1
,
2
三
段
论
3.\neg B\to ((A\to B)\to (A\to \neg A))\quad 1,2三段论
3.¬B→((A→B)→(A→¬A))1,2三段论
4.
(
A
→
B
)
→
(
¬
B
→
(
A
→
¬
A
)
)
3
,
前
件
互
换
定
理
r
m
p
4.(A\to B)\to (\neg B\to (A\to \neg A))\quad 3,前件互换定理r_{mp}
4.(A→B)→(¬B→(A→¬A))3,前件互换定理rmp
(
4
)
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
,
A
⊢
B
(4)¬((A → B) → ¬(B → A)),A ⊢ B
(4)¬((A→B)→¬(B→A)),A⊢B
1.
¬
(
A
→
B
)
→
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
定
理
3.1.3
1.\neg (A\to B)\to ((A\to B)\to \neg (B\to A))\quad 定理3.1.3
1.¬(A→B)→((A→B)→¬(B→A))定理3.1.3
2.
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
→
(
A
→
B
)
1
逆
否
2.\neg ((A\to B)\to \neg (B\to A))\to (A\to B)\quad 1逆否
2.¬((A→B)→¬(B→A))→(A→B)1逆否
3.
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
,
A
⊢
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
前
提
3.¬((A → B) → ¬(B → A)),A ⊢ ¬((A → B) → ¬(B → A))\quad 前提
3.¬((A→B)→¬(B→A)),A⊢¬((A→B)→¬(B→A))前提
4.
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
,
A
⊢
A
→
B
2
,
3
r
m
p
4.¬((A → B) → ¬(B → A)),A ⊢A\to B\quad 2,3r_{mp}
4.¬((A→B)→¬(B→A)),A⊢A→B2,3rmp
5.
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
,
A
⊢
A
前
提
5.¬((A → B) → ¬(B → A)),A ⊢ A\quad 前提
5.¬((A→B)→¬(B→A)),A⊢A前提
6.
¬
(
(
A
→
B
)
→
¬
(
B
→
A
)
)
,
A
⊢
B
4
,
5
r
m
p
6.¬((A → B) → ¬(B → A)),A ⊢ B\quad 4,5r_{mp}
6.¬((A→B)→¬(B→A)),A⊢B4,5rmp
六
、
在
N
D
中
证
明
:
(
10
分
)
六、在 ND 中证明:(10 分)
六、在ND中证明:(10分)
(
1
)
⊢
(
(
A
→
B
)
→
C
)
→
(
B
→
C
)
(1)⊢ ((A → B) → C) → (B → C)
(1)⊢((A→B)→C)→(B→C)
只
需
证
(
A
→
B
)
→
C
,
B
⊢
C
演
绎
定
理
只需证(A\to B)\to C,B\vdash C\quad 演绎定理
只需证(A→B)→C,B⊢C演绎定理
1.
(
A
→
B
)
→
C
,
B
;
A
⊢
B
公
理
1.(A\to B)\to C,B;A\vdash B\quad 公理
1.(A→B)→C,B;A⊢B公理
2.
(
A
→
B
)
→
C
,
B
⊢
A
→
B
1
→
引
入
2.(A\to B)\to C,B\vdash A\to B\quad 1\to引入
2.(A→B)→C,B⊢A→B1→引入
3.
(
A
→
B
)
→
C
,
B
⊢
(
A
→
B
)
→
C
公
理
3.(A\to B)\to C,B\vdash (A\to B)\to C\quad 公理
3.(A→B)→C,B⊢(A→B)→C公理
4.
(
A
→
B
)
→
C
,
B
⊢
C
2
,
3
→
消
除
4.(A\to B)\to C,B\vdash C\quad 2,3\to 消除
4.(A→B)→C,B⊢C2,3→消除
(
2
)
⊢
(
B
→
¬
C
)
→
(
¬
A
→
(
B
→
¬
(
¬
A
→
C
)
)
)
(2)⊢ (B → ¬C) → (¬A → (B → ¬(¬A → C)))
(2)⊢(B→¬C)→(¬A→(B→¬(¬A→C)))
只
需
证
B
→
¬
C
,
¬
A
,
B
⊢
¬
(
¬
A
→
C
)
演
绎
定
理
只需证B\to \neg C,\neg A,B\vdash \neg (\neg A\to C)\quad 演绎定理
只需证B→¬C,¬A,B⊢¬(¬A→C)演绎定理
1.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
¬
A
→
C
公
理
1.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg A\to C\quad 公理
1.B→¬C,¬A,B;¬A→C⊢¬A→C公理
2.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
¬
A
公
理
2.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg A\quad 公理
2.B→¬C,¬A,B;¬A→C⊢¬A公理
3.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
C
1
,
2
→
消
除
3.B\to \neg C,\neg A,B;\neg A\to C\vdash C\quad 1,2\to 消除
3.B→¬C,¬A,B;¬A→C⊢C1,2→消除
4.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
B
→
¬
C
公
理
4.B\to \neg C,\neg A,B;\neg A\to C\vdash B\to \neg C\quad 公理
4.B→¬C,¬A,B;¬A→C⊢B→¬C公理
5.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
B
公
理
5.B\to \neg C,\neg A,B;\neg A\to C\vdash B\quad 公理
5.B→¬C,¬A,B;¬A→C⊢B公理
6.
B
→
¬
C
,
¬
A
,
B
;
¬
A
→
C
⊢
¬
C
4
,
5
→
消
除
6.B\to \neg C,\neg A,B;\neg A\to C\vdash \neg C\quad 4,5\to 消除
6.B→¬C,¬A,B;¬A→C⊢¬C4,5→消除
7.
B
→
¬
C
,
¬
A
,
B
;
⊢
¬
(
¬
A
→
C
)
3
,
6
¬
引
入
7.B\to \neg C,\neg A,B;\vdash \neg (\neg A\to C)\quad 3,6\neg 引入
7.B→¬C,¬A,B;⊢¬(¬A→C)3,6¬引入
七
、
在
F
C
中
证
明
:
(
20
分
七、在 FC 中证明:(20 分
七、在FC中证明:(20分
(
1
)
⊢
(
∃
x
A
→
∀
x
¬
B
)
→
∀
x
(
A
→
¬
B
)
(1)⊢ (∃xA → ∀x¬B) → ∀x(A → ¬B)
(1)⊢(∃xA→∀x¬B)→∀x(A→¬B)
根
据
全
程
推
广
定
理
及
演
绎
定
理
,
只
需
证
∃
x
A
→
∀
x
¬
B
⊢
A
→
¬
B
根据全程推广定理及演绎定理,只需证\exists xA\to \forall x\neg B\vdash A\to \neg B
根据全程推广定理及演绎定理,只需证∃xA→∀x¬B⊢A→¬B
1.
∃
x
A
→
∀
x
¬
B
前
提
1.\exists xA\to \forall x\neg B\quad 前提
1.∃xA→∀x¬B前提
2.
∀
x
¬
B
→
¬
B
定
理
5.1.1
2.\forall x\neg B\to \neg B\quad 定理5.1.1
2.∀x¬B→¬B定理5.1.1
3.
∃
A
→
¬
B
1
,
2
三
段
论
3.\exists A\to \neg B\quad 1,2三段论
3.∃A→¬B1,2三段论
4.
A
→
∃
x
A
定
理
5.2.2
4.A\to \exists xA\quad 定理5.2.2
4.A→∃xA定理5.2.2
5.
A
→
¬
B
3
,
4
三
段
论
5.A\to \neg B\quad 3,4三段论
5.A→¬B3,4三段论
6.
∀
x
(
A
→
¬
B
)
5
全
称
推
广
6.\forall x(A\to \neg B)\quad 5全称推广
6.∀x(A→¬B)5全称推广
(
2
)
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
⊢
∃
x
¬
(
Q
(
x
)
→
¬
R
(
x
)
)
(2)∀x(P(x) → Q(x)),¬∀x(P(x) → ¬R(x)) ⊢ ∃x¬(Q(x) → ¬R(x))
(2)∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x))⊢∃x¬(Q(x)→¬R(x))
方
法
1
:
方法1:
方法1:
因
为
∃
x
¬
(
Q
(
x
)
→
¬
R
(
x
)
)
⟺
¬
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
,
使
用
反
证
法
因为\exists x\neg (Q(x)\to \neg R(x))\iff \neg \forall x(Q(x)\to \neg R(x)),使用反证法
因为∃x¬(Q(x)→¬R(x))⟺¬∀x(Q(x)→¬R(x)),使用反证法
1.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
前
提
1.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(Q(x)\to \neg R(x))\quad 前提
1.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢∀x(Q(x)→¬R(x))前提
2.
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
→
(
Q
(
x
)
→
¬
R
(
x
)
)
定
理
5.1.1
2.\forall x(Q(x)\to \neg R(x))\to (Q(x)\to \neg R(x))\quad 定理5.1.1
2.∀x(Q(x)→¬R(x))→(Q(x)→¬R(x))定理5.1.1
3.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
Q
(
x
)
→
¬
R
(
x
)
1
,
2
r
m
p
3.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash Q(x)\to \neg R(x)\quad 1,2r_{mp}
3.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢Q(x)→¬R(x)1,2rmp
4.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
∀
x
(
P
(
x
)
→
Q
(
x
)
)
前
提
4.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(P(x)\to Q(x))\quad 前提
4.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢∀x(P(x)→Q(x))前提
5.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
→
(
P
(
x
)
→
Q
(
x
)
)
定
理
5.1.1
5.\forall x(P(x)\to Q(x))\to (P(x)\to Q(x))\quad 定理5.1.1
5.∀x(P(x)→Q(x))→(P(x)→Q(x))定理5.1.1
6.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
P
(
x
)
→
Q
(
x
)
5
,
6
r
m
p
6.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash P(x)\to Q(x)\quad 5,6r_{mp}
6.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢P(x)→Q(x)5,6rmp
7.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
P
(
x
)
→
¬
R
(
x
)
3
,
6
三
段
论
7.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash P(x)\to \neg R(x)\quad 3,6三段论
7.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢P(x)→¬R(x)3,6三段论
8.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
7
定
理
5.2.5
8.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \forall x(P(x)\to \neg R(x))\quad 7定理5.2.5
8.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢∀x(P(x)→¬R(x))7定理5.2.5
9.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
;
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
⊢
¬
∀
x
(
P
(
x
)
→
Q
(
x
)
)
前
提
9.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x));\forall x(Q(x)\to \neg R(x))\vdash \neg \forall x (P(x)\to Q(x))\quad 前提
9.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x));∀x(Q(x)→¬R(x))⊢¬∀x(P(x)→Q(x))前提
10.
∀
x
(
P
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
¬
R
(
x
)
)
⊢
¬
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
8
,
9
反
证
法
10.\forall x(P(x)\to Q(x)),\neg \forall x(P(x)\to \neg R(x))\vdash \neg \forall x(Q(x)\to \neg R(x))\quad 8,9反证法
10.∀x(P(x)→Q(x)),¬∀x(P(x)→¬R(x))⊢¬∀x(Q(x)→¬R(x))8,9反证法
八
、
“
大
学
里
的
学
生
不
是
本
科
生
就
是
研
究
生
,
有
的
学
生
是
高
材
生
,
J
o
h
n
不
是
研
究
生
,
但
是
高
材
生
,
则
如
果
J
o
h
n
是
大
学
里
的
学
生
必
是
本
科
生
。
”
八、“大学里的学生不是本科生就是研究生,有的学生是高材生,John不是研究生,但是高材生,则如果John是大学里的学生必是本科生。”
八、“大学里的学生不是本科生就是研究生,有的学生是高材生,John不是研究生,但是高材生,则如果John是大学里的学生必是本科生。”
请
将
上
述
逻
辑
推
理
用
谓
词
公
式
表
示
出
来
,
并
在
F
C
中
证
明
其
推
理
的
正
确
性
。
(
15
分
)
请将上述逻辑推理用谓词公式表示出来,并在FC中证明其推理的正确性。(15分)
请将上述逻辑推理用谓词公式表示出来,并在FC中证明其推理的正确性。(15分)
令
:
谓
词
S
(
x
)
:
x
是
大
学
里
的
学
生
令:谓词S(x):x是大学里的学生
令:谓词S(x):x是大学里的学生
谓
词
B
(
x
)
:
x
是
本
科
生
谓词B(x):x是本科生
谓词B(x):x是本科生
谓
词
G
(
x
)
:
x
是
研
究
生
谓词G(x):x是研究生
谓词G(x):x是研究生
谓
词
P
(
x
)
:
x
是
高
材
生
谓词P(x):x是高材生
谓词P(x):x是高材生
则
上
述
语
句
形
式
化
为
:
则上述语句形式化为:
则上述语句形式化为:
(
1
)
∀
x
(
S
(
x
)
→
B
(
x
)
⊕
G
(
x
)
)
(1)\forall x(S(x)\to B(x)\oplus G(x))
(1)∀x(S(x)→B(x)⊕G(x))
(
2
)
∃
x
P
(
x
)
(2)\exists xP(x)
(2)∃xP(x)
(
3
)
¬
G
(
J
o
h
n
)
∧
P
(
J
o
h
n
)
(3)\neg G(John)\land P(John)
(3)¬G(John)∧P(John)
(
4
)
S
(
J
o
h
n
)
→
B
(
J
o
h
n
)
(4)S(John)\to B(John)
(4)S(John)→B(John)
令
公
式
集
Γ
=
{
∀
x
(
S
(
x
)
→
B
(
x
)
⊕
G
(
x
)
)
,
∃
x
P
(
x
)
,
¬
G
(
J
o
h
n
)
∧
P
(
J
o
h
n
)
,
S
(
J
o
h
n
)
}
令公式集\Gamma = \{ \forall x(S(x)\to B(x)\oplus G(x)),\exists xP(x),\neg G(John)\land P(John),S(John) \}
令公式集Γ={∀x(S(x)→B(x)⊕G(x)),∃xP(x),¬G(John)∧P(John),S(John)}
只
需
证
Γ
⊢
B
(
J
o
h
n
)
演
绎
定
理
只需证\Gamma\vdash B(John)\quad 演绎定理
只需证Γ⊢B(John)演绎定理
使
用
反
证
法
使用反证法
使用反证法
1.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
G
(
J
o
h
n
)
∧
P
(
J
o
h
n
)
前
提
1.\Gamma;\neg B(John)\vdash \neg G(John)\land P(John)\quad 前提
1.Γ;¬B(John)⊢¬G(John)∧P(John)前提
2.
¬
G
(
J
o
h
n
)
∧
P
(
J
o
h
n
)
→
¬
G
(
J
o
h
n
)
定
理
3.1.16
2.\neg G(John)\land P(John)\to \neg G(John)\quad 定理3.1.16
2.¬G(John)∧P(John)→¬G(John)定理3.1.16
3.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
G
(
J
o
h
n
)
1
,
2
r
m
p
3.\Gamma;\neg B(John)\vdash \neg G(John)\quad 1,2r_{mp}
3.Γ;¬B(John)⊢¬G(John)1,2rmp
4.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
B
(
J
o
h
n
)
→
¬
G
(
J
o
h
n
)
定
理
3.1.2
4.\Gamma;\neg B(John)\vdash \neg B(John)\to \neg G(John)\quad 定理3.1.2
4.Γ;¬B(John)⊢¬B(John)→¬G(John)定理3.1.2
5.
Γ
;
¬
B
(
J
o
h
n
)
⊢
G
(
J
o
h
n
)
→
B
(
J
o
h
n
)
4
逆
否
5.\Gamma;\neg B(John)\vdash G(John)\to B(John)\quad 4逆否
5.Γ;¬B(John)⊢G(John)→B(John)4逆否
6.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
B
(
J
o
h
n
)
前
提
6.\Gamma;\neg B(John)\vdash \neg B(John)\quad 前提
6.Γ;¬B(John)⊢¬B(John)前提
7.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
G
(
J
o
h
n
)
→
¬
B
(
J
o
h
n
)
定
理
3.1.2
7.\Gamma;\neg B(John)\vdash \neg G(John)\to \neg B(John)\quad 定理3.1.2
7.Γ;¬B(John)⊢¬G(John)→¬B(John)定理3.1.2
8.
Γ
;
¬
B
(
J
o
h
n
)
⊢
B
(
J
o
h
n
)
→
G
(
J
o
h
n
)
7
逆
否
8.\Gamma;\neg B(John)\vdash B(John)\to G(John)\quad 7逆否
8.Γ;¬B(John)⊢B(John)→G(John)7逆否
9.
Γ
;
¬
B
(
J
o
h
n
)
⊢
B
(
J
o
h
n
)
↔
G
(
J
o
h
n
)
由
5
,
8
可
得
9.\Gamma;\neg B(John)\vdash B(John)\leftrightarrow G(John)\quad 由5,8可得
9.Γ;¬B(John)⊢B(John)↔G(John)由5,8可得
10.
Γ
;
¬
B
(
J
o
h
n
)
⊢
∀
x
(
S
(
x
)
→
B
(
x
)
⊕
G
(
x
)
)
前
提
10.\Gamma;\neg B(John)\vdash \forall x(S(x)\to B(x)\oplus G(x))\quad 前提
10.Γ;¬B(John)⊢∀x(S(x)→B(x)⊕G(x))前提
11.
∀
x
(
S
(
x
)
→
B
(
x
)
⊕
G
(
x
)
)
→
(
S
(
J
o
h
n
)
→
B
(
J
o
h
n
)
⊕
G
(
J
o
h
n
)
)
定
理
5.2.1
11.\forall x(S(x)\to B(x)\oplus G(x))\to (S(John)\to B(John)\oplus G(John))\quad 定理5.2.1
11.∀x(S(x)→B(x)⊕G(x))→(S(John)→B(John)⊕G(John))定理5.2.1
12.
Γ
;
¬
B
(
J
o
h
n
)
⊢
S
(
J
o
h
n
)
→
B
(
J
o
h
n
)
⊕
G
(
J
o
h
n
)
12.\Gamma;\neg B(John)\vdash S(John)\to B(John)\oplus G(John)
12.Γ;¬B(John)⊢S(John)→B(John)⊕G(John)
13.
Γ
;
¬
B
(
J
o
h
n
)
⊢
S
(
J
o
h
n
)
前
提
13.\Gamma;\neg B(John)\vdash S(John)\quad 前提
13.Γ;¬B(John)⊢S(John)前提
14.
Γ
;
¬
B
(
J
o
h
n
)
⊢
B
(
J
o
h
n
)
⊕
G
(
J
o
h
n
)
12
,
13
r
m
p
14.\Gamma;\neg B(John)\vdash B(John)\oplus G(John)\quad 12,13r_{mp}
14.Γ;¬B(John)⊢B(John)⊕G(John)12,13rmp
15.
Γ
;
¬
B
(
J
o
h
n
)
⊢
¬
(
B
(
J
o
h
n
)
↔
G
(
J
o
h
n
)
)
14
异
或
同
或
转
换
15.\Gamma;\neg B(John)\vdash \neg (B(John)\leftrightarrow G(John))\quad 14异或同或转换
15.Γ;¬B(John)⊢¬(B(John)↔G(John))14异或同或转换
16.
Γ
⊢
B
(
J
o
h
n
)
9
,
15
反
证
法
16.\Gamma\vdash B(John)\quad 9,15反证法
16.Γ⊢B(John)9,15反证法
2015年哈工大数理逻辑A期末考试参考答案(2)
最新推荐文章于 2021-06-16 17:04:32 发布