DFS求连通块

DFS代码实现模板

void dfs(int cur, vector<int>& visited, vector<vector<int>>& graph) {
    visited[cur] = 1; // 标记当前节点已经被访问
    // 处理当前节点cur
    for (int i = 0; i < graph[cur].size(); i++) {
        int next = graph[cur][i];
        if (!visited[next]) { // 如果下一个节点未被访问
            dfs(next, visited, graph); // 继续访问下一个节点
        }
    }
}
void dfsTraversal(vector<vector<int>>& graph) {
    int n = graph.size();
    vector<int> visited(n, 0); // 初始化访问数组
    for (int i = 0; i < n; i++) {
        if (!visited[i]) { // 如果当前节点未被访问
            dfs(i, visited, graph); // 从当前节点开始进行深度优先遍历
        }
    }
}

在这里插入图片描述
稀土掘金

#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
const int N = 1000;

int cnt;
int n,m;
bool mp[N][N];
int dx[4] = {1,-1,0,0};//向上 向下 向左 向右
int dy[4] = {0,0,-1,1};

void dfs(int x,int y){
    if(x < 0 || y<0 || x >= n ||y>=m) return ;
    if(mp[x][y])  return ;
    cnt ++;  
    mp[x][y] = 1;
    for(int i=0;i<4;i++){
        int new_x = x + dx[i];
        int new_y = y + dy[i];
        dfs(new_x,new_y);
    }
}

int main(){
    cin>>n>>m;
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            cin>>mp[i][j];
        }
    }

    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            cout<<mp[i][j]<<" \n"[j == m-1];   //第一次见
        }
    }

    int ans = 0;
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            if(!mp[i][j]){ //当前座位为 0 时
                cnt =0;  //定义为全局变量
                dfs(i,j);
                ans = max (ans,cnt);
            }
        }
    }
    cout<<ans;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值