POJ旅行商问题——解题报告

本文介绍了一个旅行商问题的解题报告,探讨如何在给定城市间距离的条件下,寻找最短路径。通过使用深度优先搜索和邻接矩阵,结合set数据结构优化搜索过程。同时提出从不同起点搜索和通过修剪最短哈密顿回路得到哈密顿通路的思路。
摘要由CSDN通过智能技术生成
旅行商问题

总时间限制: 1000ms 内存限制: 65536kB

描述

某国家有n(1<=n<=10)座城市,给定任意两座城市间距离(不超过1000的非负整数)。一个旅行商人希望访问每座城市恰好一次(出发地任选,且最终无需返回出发地)。求最短的路径长度。

输入

第一行输入一个整数n
接下来n行,每行n个数,用空格隔开,以邻接矩阵形式给出城市间距离。该邻接矩阵是对称的,且对角线上全为0

输出

一行,最短路径的长度

样例输入
6
0 16 1 10 12 15
16 0 10 2 10 8
1 10 0 10 5 10
10 2 10 0 9 3
12 10 5 9 0 8
15 8 10 3 8 0
样例输出
19
解题思路

这个问题可以抽象为在 n n n阶无向完全图 K n K_n Kn中,给定每个边加权(长度),然后在该带权图中求一条权和最小的哈密顿通路(只求解最小权和即可)。我的想法是使用深度优先搜索求解,过程中使用了set来储存通路的长度,由于set使用二叉搜索树,可以在 O ( log ⁡ n ) O(\log n) O(logn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值