POJ 3311 旅行商问题 状态压缩

这篇博客探讨了如何解决旅行商问题,允许旅行者多次访问同一地点。作者通过首先计算每对点之间的最短路径,然后利用状态压缩的动态规划方法来寻找从当前点出发遍历剩余所有点并返回原点的最短路线。文章指出,初始化的递归调用是关键,确保可以从剩余点返回原点。最后,介绍了状态转移方程dp[s][v]的更新方式。
摘要由CSDN通过智能技术生成

求走过所有点并回到原点的最短路,可以走一个点多次.

因为可以走一个点多次,所以,可以先求出每两个点之间的最短路,然后用经典的旅行商问题的状态压缩DP做法。

旅行商问题的状态压缩DP

状态压缩还是 状态 阶段 答案

状态就是已经走过的点,阶段就是现在在哪一个点,答案就是从这个点出发遍历剩下的点,并且回到原点的最短路是多少。

一开始我有一个疑问,为什么一定能从剩下的点回到原点?这是因为一开始的时候开始递归的调用是rec(0,0),所以一开始所在的点是0,但是并没有把这个点设置为已经被遍历,所以其他点是可以回到原点的,并且只有遍历所有其他点并回到原点,才有初始值。如果一开始的时候设置成rec(1,0)的话,那么就一定不能回到原点了,因为无论如何转移,1都是已经被遍历过的,其他点是回不到0点的。

显然dp[11111][0]=0,dp[0][0]就是答案。

转移

从v可以到达的所有点是u,这个问题中任何两点之间都是可达的。

从dp[s][v]=min(dp([s|1<<u],u)+dp[u][v]);

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int n;
int d[30][30];
int dp[1<<11][20];

int rec(int s,int v)
{
	//printf("%d %d\n",s,v);
	if(dp[s][v]!=-1)
		return dp[s][v];
	int res=INF
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值