- 博客(5)
- 收藏
- 关注
原创 机器学习训练营(五):挖掘幸福感!
Step 1import numpy as np;import pandas as pd;import matplotlib.pyplot as plt;import seaborn as sns;import datetime as dt;
2021-01-08 22:45:39 598 1
原创 机器学习训练营(四):K近邻(k-nearest neighbors)算法
目录K近邻(k-nearest neighbors)介绍K近邻(k-nearest neighbors)介绍K近邻算法的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集种每个数都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前kkk个最相似的数据,这就是kkk-近邻算法中kkk的出处,通常kkk是不大于20的整数。
2020-12-28 21:56:43 1434 1
原创 机器学习训练营(二): 基于逻辑回归的分类预测
三、基于鸢尾花(iris)数据集的逻辑回归分类实践在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy,pandas,matplotlib和seaborn绘图。Step1:库函数导入## 基础函数库import numpy as np import pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目
2020-12-23 22:59:33 576 2
原创 机器学习训练营(一): 基于逻辑回归的分类预测
一、逻辑回归介绍逻辑回归(Logistic Regression)是一种广义线性回归,通过logistic函数将 w′x+bw'x+bw′x+b 对应一个隐状态p=L(w′x+b)p =L(w'x+b)p=L(w′x+b),然后根据 ppp 与 1−p1-p1−p 的大小决定因变量的值。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用。二、Demo实践...
2020-12-21 21:59:30 579 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人