机器学习训练营(二): 基于逻辑回归的分类预测

三、基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy,pandas,matplotlib和seaborn绘图。

Step1:库函数导入

##  基础函数库
import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

变量描述
sepal length花萼长度(cm)
sepal width花萼宽度(cm)
petal length花瓣长度(cm)
petal width花瓣宽度(cm)
target鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2)

Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息
iris_features.info()

在这里插入图片描述

## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()

在这里插入图片描述

## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target

在这里插入图片描述

## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()

在这里插入图片描述

## 对于特征进行一些统计描述
iris_features.describe()

在这里插入图片描述

Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target#对标签和特征信息进行合并

## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')#暂时显示不了
plt.show()

输出为:
在这里插入图片描述

#盒图画法
for col in iris_features.columns:#循环每个特征画图
    sns.boxplot(x='target', y=col, saturation=0.9,palette='pastel', data=iris_all)#palette:控制图像的色调;saturation:控制用于绘制颜色的原始饱和度的比例
    plt.title(col)
    plt.show()

在这里插入图片描述
利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况,显示出改组数据的最大值、最小值、中位数及上下四分位数。

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')#添加子坐标轴,111表示1行1列的第一个子图
#将类别为0,1,2的分别分组
iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend(loc="upper left") #legend的位置在左上,默认右上

plt.show()

在这里插入图片描述

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]#[0:100]为类别为1和2的样本
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)#random_state随机数种子

from sklearn.linear_model import LogisticRegression## 从sklearn中导入逻辑回归模型
## 定义 逻辑回归模型,solver='lbfgs'用于优化问题的算法,处理多项损失。
clf = LogisticRegression(random_state=0, solver='lbfgs')
clf.fit(x_train, y_train)# 在训练集上训练逻辑回归模型

输出为:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,verbose=0, warm_start=False)

#模型参数查看
#print('the weight of Logistic Regression:',clf.coef_)## 查看其对应的w
#print('the intercept(w0) of Logistic Regression:',clf.intercept_)## 查看其对应的w0
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
#模型预测准确度查看
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

输出为:
在这里插入图片描述

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

输出为:
在这里插入图片描述

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

输出为:
空缺
我们可以发现其准确度为1,代表所有的样本都预测正确了。

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

输出为:
在这里插入图片描述

## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
print("\n")
## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。

在这里插入图片描述

## 在训练集和测试集上分别利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

在这里插入图片描述

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

输出为:
在这里插入图片描述

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

输出为:
在这里插入图片描述

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述
通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为: 86.67 % 86.67\% 86.67%,这是由于 ‘versicolor’(1)和 ‘virginica’(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

链接:
AI训练营机器学习-阿里云天池

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值