从代码学习深度学习 - 异步计算 PyTorch 版


前言

在深度学习中,计算效率是模型训练和推理的关键。PyTorch 作为一个强大的深度学习框架,提供了对异步计算的原生支持,特别是在 GPU 上的操作。本文将通过代码示例深入探讨 PyTorch 中的异步计算机制,分析其性能优势,并展示如何通过简单的工具方法测量和优化计算性能。

完整代码:下载链接


一、异步计算简介

Python 本身并不擅长并行和异步编程,因为其解释器是单线程的,且受全局解释器锁(GIL)的限制。然而,PyTorch 通过其底层的 C++ 后端和调度器,实现了高效的异步计算。特别是在 GPU 上,PyTorch 的操作默认是异步的:当调用 GPU 函数时,操作会被排队到设备上,但不会立即执行。这种机制允许并行执行多个计算任务,例如在 CPU 和 GPU 之间,或在多个 GPU 之间,从而显著提升性能。

以下代码展示了 PyTorch 如何利用异步计算来加速矩阵运算,并与 NumPy 的 CPU 计算进行对比。

二、工具方法

为了便于性能测试和设备管理,我们需要一些实用工具。以下是实现中的三个核心工具方法。

2.1 GPU 设备选择

try_gpu 函数用于检测并选择可用的 GPU 设备。如果指定的 GPU 不可用,则回退到 CPU。

import torch

def try_gpu(i=0):
    """如果存在,则返回gpu(i),否则返回cpu()
    
    Args:
        i (int, optional): GPU设备的编号,默认为0,表示尝试使用第0号GPU
    
    Returns:
        torch.device: 返回可用的设备对象,如果指定编号的GPU可用则返回GPU,否则返回CPU
    """
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{
     i}')
    return torch.device('cpu')

2.2 计时器

Timer 类用于记录代码块的运行时间,支持多次计时并计算平均时间、总和及累积时间。

import time
import numpy as np

class Timer:
    """记录多次运行时间"""
    def __init__(self):
        self.times = []
        self.start()

    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值