从代码学习深度学习 - 自动并行 PyTorch 版


前言

在深度学习中,计算效率是模型训练和推理的关键。随着硬件性能的提升,特别是多GPU设备的普及,如何高效利用这些计算资源成为一个重要课题。PyTorch 等深度学习框架通过自动构建计算图,提供了自动并行化的能力,使得开发者无需手动编写复杂的并行代码即可实现高效的计算。本文将通过代码示例,深入探讨 PyTorch 中自动并行的实现,涵盖工具函数、GPU并行计算、数据通信以及同步数据并行训练的完整流程,帮助读者从代码层面理解深度学习的并行优化。

完整代码:下载链接


一、自动并行概述

深度学习框架(如 PyTorch、MxNet 和飞桨)会在后端自动构建计算图。通过分析计算图中的依赖关系,框架可以识别并行执行的机会,从而优化计算效率。例如,PyTorch 的 dot 操作符能够自动利用单台机器上所有 CPU 核心或单个 GPU 的全部计算资源。然而,在单设备上并行化的收益有限,而多设备(例如多 GPU)场景下并行化的优势尤为显著。

注意:本文中的实验需要至少两块 GPU 来运行。如果你的设备不符合要求,可以通过阅读代码和分析输出结果来理解并行机制。

二、工具函数

为了支持并行计算,我们需要一些工具函数来检测可用设备、管理计时和基准测试。以下是三个核心工具函数的实现:

2.1. 设备检测函数

import torch

def try_gpu(i=0):
    """如果存在,则返回gpu(i),否则返回cpu()
    
    Args:
        i (int, optional): GPU设备的编号,默认为0,表示尝试使用第0号GPU
    
    Returns:
        torch.device: 返回可用的设备对象,如果指定编号的GPU可用则返回GPU,否则返回CPU
    """
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{
     i}')
    return torch.device('cpu')

def try_all_gpus():
    """
    返回所有可用的GPU,如果没有GPU,则返回[cpu(),]
    
    Returns:
        list: 可用设备的列表,每个元素是一个torch.device对象
    """
    devices = [torch.device(f'cuda:{
     i}') for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

2.2. 计时器类

import time
import numpy

class Timer:
    """记录多次运行时间"""
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """启动计时器"""
        self.tik = time.time()

    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值