文章目录
前言
深度学习模型的训练通常需要大量计算资源,尤其是在处理大规模数据集或复杂模型时,单GPU的性能可能成为瓶颈。多GPU并行训练通过将计算任务分配到多个GPU上,可以显著加速训练过程。PyTorch 提供了强大的多GPU支持,例如通过 nn.DataParallel
实现数据并行,适合快速上手。
本文将基于一个实际的多GPU训练示例,展示如何使用 PyTorch 在 MNIST 数据集上训练一个卷积神经网络(CNN)。我们将完整呈现代码,解析其实现原理,并展示训练结果的可视化。附件中的代码运行结果(测试准确率图)将成为我们分析的起点,帮助你理解多GPU训练的实际效果。
完整代码:下载链接
一、代码实现与解析
以下是推断出的完整代码,基于附件中的运行参数(batch_size=521
, lr=0.1
)和生成的测试准确率图。我们假设代码使用了标准的 PyTorch 多GPU训练流程,并在 MNIST 数据集上训练一个简单的 CNN。
1.1 完整代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义卷积神经网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Linear(7*7*32, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out