从代码学习深度学习 - 多GPU训练 PyTorch 版


前言

深度学习模型的训练通常需要大量计算资源,尤其是在处理大规模数据集或复杂模型时,单GPU的性能可能成为瓶颈。多GPU并行训练通过将计算任务分配到多个GPU上,可以显著加速训练过程。PyTorch 提供了强大的多GPU支持,例如通过 nn.DataParallel 实现数据并行,适合快速上手。

本文将基于一个实际的多GPU训练示例,展示如何使用 PyTorch 在 MNIST 数据集上训练一个卷积神经网络(CNN)。我们将完整呈现代码,解析其实现原理,并展示训练结果的可视化。附件中的代码运行结果(测试准确率图)将成为我们分析的起点,帮助你理解多GPU训练的实际效果。

完整代码:下载链接


一、代码实现与解析

以下是推断出的完整代码,基于附件中的运行参数(batch_size=521, lr=0.1)和生成的测试准确率图。我们假设代码使用了标准的 PyTorch 多GPU训练流程,并在 MNIST 数据集上训练一个简单的 CNN。

1.1 完整代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义卷积神经网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.fc = nn.Linear(7*7*32, 10)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值