LBM笔记:Exact Difference Method 构建的源项

本文同步发表于知乎个人主页.

我在阅读其他文献时,看到有文献提到 Kupershtokh 的一篇关于 LBM 外力项的文章1,他提出的格式在其他文章中又被称为 Exact difference method(EDM)

本想搜索这篇文章的PDF进行阅读,但最后只找到一个网站介绍了部分信息。这份粗略笔记的内容,都是基于其他文献2 3 4中对该方法的介绍而整理的。

介绍

Boltzmann-BGK方程的近似

密度分布函数 f f f 的 Boltzmann-BGK方程写作:

∂ f ∂ t + ξ ⋅ ∇ f + a ⋅ ∇ ξ f = − 1 τ f [ f − f ( e q ) ] (1) \frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f + \bold{a} \cdot \nabla_{\bold{\xi}} f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] \tag{1} tf+ξf+aξf=τf1[ff(eq)](1)

其中:

f ( e q ) = ρ ( 2 π R g T ) D / 2 exp ⁡ ( − ( ξ − u ) 2 2 R g T ) (2) f^{(eq)} = \frac{\rho}{(2 \pi R_g T)^{D/2}} \exp{\left(- \frac{(\bold{\xi} - \bold{u})^2}{2 R_g T}\right)} \tag{2} f(eq)=(2πRgT)D/2ρexp(2RgT(ξu)2)(2)

符号含义分别为

  • ξ \bold{\xi} ξ : 粒子速度;
  • ρ \rho ρ : 流体密度;
  • u \bold{u} u : 流场宏观速度;
  • R g R_g Rg : 气体常数;
  • T T T : 温度;
  • a = d u / d t \bold{a}=\mathrm{d}\bold{u}/\mathrm{d}t a=du/dt : 流场加速度。

Knudsen数较小时,Boltzmann方程的体力项可以基于 f ( e q ) f^{(eq)} f(eq)进行近似,即
∇ ξ f ≈ ∇ ξ f ( e q ) \nabla_{\bold{\xi}} f \approx \nabla_{\bold{\xi}} f^{(eq)} ξfξf(eq)

根据式(2), f ( e q ) f^{(eq)} f(eq) 是分子随机速度 C = ξ − u \bold{C} = \bold{\xi} - \bold{u} C=ξu 的指数函数,则:
∂ f ( e q ) ∂ u = − ∂ f ( e q ) ∂ ξ = − ∇ ξ f ( e q ) \frac{\partial f^{(eq)}}{\partial \bold{u}} = -\frac{\partial f^{(eq)}}{\partial \bold{\xi}} = -\nabla_{\bold{\xi}} f^{(eq)} uf(eq)=ξf(eq)=ξf(eq)

假设密度 ρ \rho ρ 为常数,则 d ρ d t = 0 \frac{\mathrm{d} \rho}{\mathrm{d} t}=0 dtdρ=0,那么 f ( e q ) f^{(eq)} f(eq) 的全导数为:

d f ( e q ) d t = ∂ f ( e q ) ∂ u ⋅ d u d t + ∂ f ( e q ) ∂ ρ ⋅ d ρ d t ≈ ∂ f ( e q ) ∂ u ⋅ d u d t = − a ⋅ ∇ ξ f ( e q ) \begin{aligned} \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} &= \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} + \frac{\partial f^{(eq)}}{\partial \rho} \cdot \frac{\mathrm{d} \rho}{\mathrm{d} t} \\ &\approx \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} = -\bold{a} \cdot \nabla_{\bold{\xi}} f^{(eq)} \end{aligned} dtdf(eq)=uf(eq)dtdu+ρf(eq)dtdρuf(eq)dtdu=aξf(eq)

也就是说,Kupershtokh 等12近似的 Boltzmann-BGK方程写作:

∂ f ∂ t + ξ ⋅ ∇ f = − 1 τ f [ f − f ( e q ) ] + d f ( e q ) d t (3) \frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] + \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} \tag{3} tf+ξf=τf1[ff(eq)]+dtdf(eq)(3)

近似方程的离散化

将式(3)在 [ t , t + δ t ] [t,t+\delta_t] [t,t+δt]内沿着 e α \bold{e}_\alpha eα方向积分,可得

f α ( x + e α δ t , t + δ t ) − f α ( x , t ) = − 1 τ [ f α ( x , t ) − f α ( e q ) ( ρ , u ∗ ) ] + [ f α ( e q ) ( u ∗ ( t + δ t ) ) − f α ( e q ) ( u ∗ ( t ) ) ] (4) \begin{aligned} f_\alpha (\bold{x} + \bold{e}_\alpha \delta_t, t+\delta_t) - f_\alpha (\bold{x}, t) =& -\frac{1}{\tau} \left[ f_\alpha (\bold{x}, t) - f_\alpha^{(eq)} (\rho, \bold{u^*}) \right] \\ & + \left[ f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \right] \end{aligned} \tag{4} fα(x+eαδt,t+δt)fα(x,t)=τ1[fα(x,t)fα(eq)(ρ,u)]+[fα(eq)(u(t+δt))fα(eq)(u(t))](4)

其中:

  • δ t \delta_t δt 为时间步长;
  • τ = τ f / δ t \tau = \tau_f / \delta_t τ=τf/δt 为无量纲松弛时间;
  • x \bold{x} x 为网格点位置, ρ , u ∗ \rho, \bold{u^*} ρ,u 分别为该点在 t t t 时刻的密度和速度(与宏观速度 u \bold{u} u 有区别);
  • f α , f α ( e q ) f_\alpha, f_\alpha^{(eq)} fα,fα(eq) 分别为 e α \bold{e}_\alpha eα 方向的分布函数平衡态
    f α ( e q ) = w α ρ ⋅ [ 1 + e α ⋅ u c s 2 + ( e α ⋅ u ) 2 2 c s 4 − ∣ u ∣ 2 2 c s 2 ] = w α ρ ⋅ [ 1 + e α ⋅ u c s 2 + 1 2 c s 4 ( u u ) : ( e α e α − c s 2 [ I ] ) ] (4-1) \begin{aligned} f_\alpha^{(eq)} &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{(\bold{e}_\alpha \cdot \bold{u})^2}{2 c_s^4} - \frac{|\bold{u}|^2}{2 c_s^2} \right] \\ &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\ \end{aligned} \tag{4-1} fα(eq)=wαρ[1+cs2eαu+2cs4(eαu)22cs2u2]=wαρ[1+cs2eαu+2cs41(uu):(eαeαcs2[I])](4-1)
    这里 w α w_\alpha wα e α \bold{e}_\alpha eα 的权重系数, [ I ] [\bold{I}] [I] 为单位矩阵;两个同样为m*n大小的矩阵 [ A ] [\bold{A}] [A] [ B ] [\bold{B}] [B] ,则 [ A ] : [ B ] = ∑ i = 1 m ∑ j = 1 n A i j B i j [\bold{A}] : [\bold{B}] = \sum^{m}_{i=1}\sum^{n}_{j=1} A_{ij} B_{ij} [A]:[B]=i=1mj=1nAijBij
  • F α F_\alpha Fα 为外力项,其表达式基于外力 F = ρ d u ∗ d t = ρ a \bold{F} = \rho \dfrac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} = \rho \bold{a} F=ρdtdu=ρa 进行构建。

F α = f α ( e q ) ( u ∗ ( t + δ t ) ) − f α ( e q ) ( u ∗ ( t ) ) F_\alpha = f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) Fα=fα(eq)(u(t+δt))fα(eq)(u(t))

并且

u ∗ ( t ) = ( ∑ α f α e α ) / ( ∑ α f α ) u ∗ ( t + δ t ) = u ∗ ( t ) + ∫ t t + δ t d u ∗ d t d t = u ∗ ( t ) + ∫ t t + δ t F ρ d t ≈ u ∗ ( t ) + F ρ δ t (5) \begin{aligned} \bold{u^*}(t) &= \left(\sum_{\alpha} f_\alpha \bold{e}_\alpha \right) / \left(\sum_{\alpha} f_\alpha \right) \\ \bold{u^*}(t+\delta_t) &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} \mathrm{d} t \\ &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\bold{F}}{\rho} \mathrm{d} t \approx \bold{u^*}(t) + \frac{\bold{F}}{\rho} \delta_t \end{aligned} \tag{5} u(t)u(t+δt)=(αfαeα)/(αfα)=u(t)+tt+δtdtdudt=u(t)+tt+δtρFdtu(t)+ρFδt(5)

这意味着加速度 a = F / ρ \bold{a}=\bold{F}/\rho a=F/ρ [ t , t + δ t ] [t,t+\delta_t] [t,t+δt] 时间段内被视为常数。

Kupershtokh等在这篇文章2说明,在使用该源项时,流体宏观量的计算应表示为:

ρ = ∑ α f α , ρ u = ∑ i e α f α + δ t F 2 (6) \rho = \sum_{\alpha} f_\alpha ,\quad \rho \bold{u} = \sum_{i} \bold{e}_\alpha f_\alpha + \frac{\delta_t \bold{F}}{2} \tag{6} ρ=αfα,ρu=ieαfα+2δtF(6)

Li 等4通过 Chapman-Enskog 展开证明:该格式向宏观方程引入的误差项为:
E r r o r E D M = − δ t 2 ∇ ⋅ ( F F 4 ρ ) (7) \mathbf{Error}_{\mathrm{EDM}} = -\delta_t^2 \nabla\cdot\left( \frac{\bold{FF}}{4 \rho} \right) \tag{7} ErrorEDM=δt2(4ρFF)(7)

EDM 源项的展开式

为便于分析,这里采用如下书写形式的平衡态:
f α ( e q ) = w α ρ ⋅ [ 1 + e α ⋅ u c s 2 + 1 2 c s 4 ( u u ) : ( e α e α − c s 2 [ I ] ) ] f_\alpha^{(eq)} = w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] fα(eq)=wαρ[1+cs2eαu+2cs41(uu):(eαeαcs2[I])]

将其带入 EDM 源项,记 Δ u = F ρ δ t \Delta\bold{u} = \frac{\bold{F}}{\rho} \delta_t Δu=ρFδt,整理得:

F α = f α ( e q ) ( u ∗ ( t + δ t ) ) − f α ( e q ) ( u ∗ ( t ) ) = ρ w α { e α ⋅ Δ u c s 2 + 1 2 c s 4 [ ( u ∗ + Δ u ) ( u ∗ + Δ u ) − u ∗ u ∗ ] : ( e α e α − c s 2 [ I ] ) } \begin{aligned} F_\alpha &= f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \\ &= \rho w_\alpha \left\{ \frac{\bold{e}_\alpha \cdot \Delta\bold{u}}{c_s^2} + \\ \frac{1}{2 c_s^4} \left[ (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) \right.\right. \\ &\qquad\qquad \left. - \bold{u}^* \bold{u}^* \right] : \left.(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right\} \end{aligned} Fα=fα(eq)(u(t+δt))fα(eq)(u(t))=ρwα{cs2eαΔu+2cs41[(u+Δu)(u+Δu)uu]:(eαeαcs2[I])}

这里涉及矩阵 ( u ∗ + Δ u ) ( u ∗ + Δ u ) (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) (u+Δu)(u+Δu) u ∗ u ∗ \bold{u}^* \bold{u}^* uu 的相减,由于:
( u ∗ + Δ u ) ( u ∗ + Δ u ) = ( u i ∗ + Δ u i ) ( u j ∗ + Δ u j ) , u ∗ u ∗ = u i ∗ u j ∗ (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) = (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j), \quad \bold{u}^* \bold{u}^* = u^*_{i} u^*_{j} (u+Δu)(u+Δu)=(ui+Δui)(uj+Δuj),uu=uiuj

其中 u i u_i ui Δ u i = F i δ t / ρ \Delta u_i = F_i \delta_t / \rho Δui=Fiδt/ρ 分别为 u \bold{u} u Δ u \Delta\bold{u} Δu 在 i 轴上的分量,所以:
( u ∗ + Δ u ) ( u ∗ + Δ u ) − u ∗ u ∗ = ( u i ∗ + Δ u i ) ( u j ∗ + Δ u j ) − u i ∗ u j ∗ = δ t ρ ( u i ∗ F j + u j ∗ F i ) + δ t 2 ρ 2 F i F j = δ t ρ ( u i ∗ + F i δ t 2 ρ ) F j + δ t ρ ( u j ∗ + F j δ t 2 ρ ) F i \begin{aligned} & (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) - \bold{u}^* \bold{u}^* \\ =& (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j) - u^*_{i} u^*_{j} \\ =& \frac{\delta_t}{\rho} (u_i^* F_j + u_j^* F_i) + \frac{{\delta_t}^2}{\rho^2} F_i F_j \\ =& \frac{\delta_t}{\rho} (u_i^* + \frac{F_i \delta_t}{2 \rho}) F_j + \frac{\delta_t}{\rho} (u_j^* + \frac{F_j \delta_t}{2 \rho}) F_i \end{aligned} ===(u+Δu)(u+Δu)uu(ui+Δui)(uj+Δuj)uiujρδt(uiFj+ujFi)+ρ2δt2FiFjρδt(ui+2ρFiδt)Fj+ρδt(uj+2ρFjδt)Fi

这里令 v E D M = u ∗ + F δ t 2 ρ \bold{v}_{\rm{EDM}} = \bold{u}^* + \frac{\bold{F} \delta_t}{2 \rho} vEDM=u+2ρFδt ,则 EDM 源项的展开式化简为:

F α = δ t w α [ e α ⋅ F c s 2 + 1 2 c s 4 ( v E D M F + F v E D M ) : ( e α e α − c s 2 [ I ] ) ] (8) \begin{aligned} F_\alpha &= \delta_t w_\alpha \left[ \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} + \frac{1}{2 c_s^4} \left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \end{aligned} \tag{8} Fα=δtwα[cs2eαF+2cs41(vEDMF+FvEDM):(eαeαcs2[I])](8)
上式即为EDM源项的展开结果。


  1. Kupershtokh, A. L. New method of incorporating a body force term into the lattice Boltzmann equation. in Proceeding of the 5th international EHD workshop 241–246 (Poitiers, France, 2004). ↩︎ ↩︎

  2. A.L. Kupershtokh, D.A. Medvedev, & D.I. Karpov (2009). On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 58(5), 965-974. DOI:10.1016/j.camwa.2009.02.024. ↩︎ ↩︎ ↩︎

  3. Q. Li, K.H. Luo, Q.J. Kang, Y.L. He, Q. Chen, & Q. Liu (2016). Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105. DOI:10.1016/j.pecs.2015.10.001. ↩︎

  4. Li, Q., Zhou, P., & Yan, H. (2016). Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Physical Review E, 94, 043313. DOI:10.1103/PhysRevE.94.043313. ↩︎ ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值