这是我之前的一次期末大报告作业,里面的内容也算是从其他文章里搬运的,在此重新誊抄出来。内容如有错误,欢迎各位指正。
[注] 下文提到的
x
x
x 、
u
u
u 和
ξ
\xi
ξ 无论有没有加粗均为向量。
本文同样也发在了知乎专栏上。
文章目录
一、 单松弛格子Boltzmann方程
1.1 Boltzmann方程
格子Boltzmann方法基于Boltzmann方程(即(1)式),该方程引入速度分布函数,描述了非热力学平衡状态的热力学系统统计行为:
∂ f ∂ t + ξ ⋅ ∂ f ∂ x + F m ⋅ ∂ f ∂ ξ = Ω ( f ) (1) \frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} + \frac{F}{m} \cdot \frac{\partial f}{\partial \mathbf{\xi}}=\Omega(f) \tag{1} ∂t∂f+ξ⋅∂x∂f+mF⋅∂ξ∂f=Ω(f)(1)
(1)式中 Ω ( f ) \Omega(f) Ω(f)为碰撞项, ξ = ∂ x ∂ t \mathbf{\xi}=\frac{\partial x}{\partial t} ξ=∂t∂x 。速度分布函数的定义是:在时刻 t t t,以 x x x为中心的空间微元 d x \rm{d}\mathit{x} dx 内,速度在 ξ \xi ξ 和 ( ξ + d ξ ) (\xi+\rm{d}\it{\xi} ) (ξ+dξ) 之间的分子的数量为 f d x d ξ f \rm{d}\it{x} \rm{d}\it{\xi} fdxdξ 。记分子质量为 m m m ,流体宏观速度为 u u u,单位体积内能为 e e e,分子数密度为 n n n,则:
ρ = m n = m ∫ f d ξ \rho = mn = m \int{f} \mathrm{d}\xi ρ=mn=m∫fdξ
ρ u = m ∫ ξ f d ξ \rho u = m \int{\xi f} \mathrm{d}\xi ρu=m∫ξfdξ
ρ E = ρ e + 1 2 ρ u 2 = m ∫ f ξ 2 2 d ξ \rho E = \rho e + \frac{1}{2} \rho u^2 = m \int{ f \frac{\xi^2}{2} } \rm{d} \xi ρE=ρe+21ρu2=m∫f2ξ2dξ
碰撞项 描述了分子碰撞对整个系统运动产生的影响,它具有两个特点:①满足质量、动量和能量守恒;②能够反映系统趋于平衡态的趋势。Bhatnagur、Gross和Krook三人在此基础上提出了最为简单且著名的BGK模型,即(2)式。
Ω ( f ) = − 1 τ c ( f − f ( e q ) ) (2) \Omega(f) = -\frac{1}{\tau_c} \left ( f - f^{(eq)} \right ) \tag{2} Ω(f)=−τc1(f−f(eq))(2)
其中 τ c \tau_c τc为松弛时间, f ( e q ) f^{(eq)} f(eq) 为平衡态分布函数。 可根据Boltzmann H定理计算得:
f ( e q ) = n ( 2 π R T ) 3 / 2 e x p ( − ( ξ − u ) 2 2 R T ) (3) f^{(eq)} = \frac{n}{(2 \pi RT)^{3/2}} \mathrm{exp}\left( -\frac{(\mathbf{\xi-u})^2}{2RT} \right) \tag{3} f(eq)=(2πRT)3/2nexp(−2RT(ξ−u)2)(3)
1.2 格子Boltzmann方程
为了将Boltzmann方程应用于实际的数值模拟,需要将流体视为大量的离散粒子。离散粒子于流体分子不同,它们驻留在网格上,并按一定的规则在网格上发生碰撞和迁移。因此,1.2节将 m f mf mf 记为 f f f,此时 f f f 为密度分布函数。对密度分布函数 f f f ,不考虑 F F F 的Boltzmann-BGK方程为式。
∂ f ∂ t + ξ ⋅ ∂ f ∂ x = − 1 τ c [ f − f ( e q ) ] (4) \frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = - \frac{1}{\tau_c} \left[ f - f^{(eq)} \right] \tag{4} ∂t∂f+ξ⋅∂x∂f=−τc1[f−f(eq)](4)
其宏观量按如下方式确定
ρ = ∫ f d ξ , ρ u = ∫ ξ f d ξ , ρ E = ∫ f ξ 2 2 d ξ \rho = \int { f } \rm{d} \xi ,\rho u = \int { \xi f } \rm{d} \xi ,\rho E = \int { f \frac{\xi^2}{2} } \rm{d} \xi ρ=∫fdξ,ρu=∫ξfdξ,ρE=∫f2ξ2dξ
对 f f f 和其对应的 f ( e q ) f^{(eq)} f(eq) 可进行如下离散: f i = w i f f_i = w_i f fi=wif , f i ( e q ) = w i f ( e q ) f_i^{(eq)} = w_i f^{(eq)} fi(eq)=wif(eq) 。其中下标 i i i表示特征方向 c i \boldsymbol{c}_i ci, f i f_i fi 和 f i ( e q ) f_i^{(eq)} fi(eq)均沿着 c i \boldsymbol{c}_i ci方向运动。据此,沿着特征方向离散(4)式得到的差分格式为
f i ( x + ξ i Δ t , t + Δ t ) − f i ( x , t ) = − 1 τ [ f i ( x , t ) − f i ( e q ) ( x , t ) ] (5) f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right] \tag{5} fi(x+ξiΔt,t+Δt)−fi(x,t)=−τ1[fi(x,t)−fi(eq)(x,t)](5)
其中 τ = τ c Δ t \tau = \frac{\tau_c}{\Delta t} τ=Δtτc 为无量纲松弛时间。由于对应的 f ( e q ) f^{(eq)} f(eq)为:
f ( e q ) = ρ ⋅ e x p ( − ( ξ − u ) 2 2 R T ) (6-1) f^{(eq)} = \rho \cdot \rm{exp} ( - \frac{(\xi - \it{u})^2}{2\it{RT}} ) \tag{6-1} f(eq)=ρ⋅exp(−2RT(ξ−u)2)(6-1)
所以将 f ( e q ) f^{(eq)} f(eq)展开至2阶并离散,可得:
f i ( e q ) = w i ρ [ 1 + ξ i ⋅ u c s 2 + ( ξ i ⋅ u ) 2 2 c s 4 − u ⋅ u 2 c s 2 ] (6-2) f^{(eq)}_i = w_i \rho \left[ 1 + \frac{\xi_i \cdot u}{c_s^2} + \frac{(\xi_i \cdot u)^2}{2 c_s^4} - \frac{u \cdot u}{2 c_s^2} \right] \tag{6-2} fi(eq)=wiρ[1+cs2ξi⋅u+2cs4(ξi⋅u)2−2cs2u⋅u](6-2)
其中 c s = R T c_s = \sqrt{RT} cs=RT 在LBM模拟中一般被称作格子声速。
二、Chapman-Enskog展开分析
将基本碰撞不变量 φ i = 1 , ξ , ξ 2 2 φ_i=1,ξ,\frac{ξ^2}{2} φi=1,ξ,2ξ2 乘以(1)式两端,并对 ξ \xi ξ 积分有:
∂ ρ ∂ t + ∇ ⋅ ( ρ u ) = 0 (7-1) \frac{∂ρ}{∂t}+∇⋅(ρ \mathbf{u})=0 \tag{7-1} ∂t∂ρ+∇⋅(ρu)=0(7-1)
∂ ( ρ u ) ∂ t + ∇ ⋅ ( ρ u u + P ) = ρ a (7-2) \frac{∂(ρu)}{∂t}+∇⋅(ρ \mathbf{uu}+P) = ρ \mathit{\bf{a}} \tag{7-2} ∂t∂(ρu)+∇⋅(ρuu+P)=ρa(7-2)
∂ ( ρ E ) ∂ t + ∇ ⋅ ( ρ u E + P ⋅ u + Q ) = ρ a ⋅ u (7-3) \frac{∂(\rho E)}{∂t} + ∇⋅(\rho \mathbf{u}E + P⋅\mathbf{u} + \mathbf{Q})=\rho \mathbf{a⋅u} \tag{7-3} ∂t∂(ρE)+∇⋅(ρuE+P⋅u+Q)=ρa⋅u(7-3)
Chapman-Enskog展开(下文简称C-E展开)是处理Boltzmann方程的一种分析方法,该方法引入小量 ε \varepsilon ε作为展开因子(一般与Knudsen数同阶),将BGK方程在不同的尺度上展开,即:
f = ∑ n = 0 ∞ ε n f ( n ) (8) f = \sum_{n=0}^{\infty} \varepsilon^n f^{(n)} \tag{8} f=n=0∑∞εnf(n)(8)
并将分布函数、导数、物理量等都按照 ε \varepsilon ε的不同阶次展开。该方法对 f ( n ) f^{(n)} f(n) 进行了限制,使其满足: ∫ f ( n ) φ i d ξ = 0 ∫f^{(n)} φ_i \mathrm{d}ξ=0 ∫f(n)φidξ=0, φ i ( i = 1 , . . , 5 ) φ_i (i=1,..,5) φi(i=1,..,5) 为基本碰撞不变量。将 f f f 视为 ρ \rho ρ 、 u \mathbf{u} u 和 T T T 及其各阶导数的泛函,而时间偏导项则展开为
∂ ∂ t = ∑ n = 0 ∞ ∂ n ∂ t (9) \frac{\partial }{\partial t} = \sum_{n=0}^{\infty } \frac{\partial _n}{\partial t} \tag{9} ∂t∂=n=0∑∞∂t∂n(9)
将(8)式和(9)式代入到(7)式中。得 O ( ε 0 ) O({\varepsilon}^0) O(ε0) 方程组为:
∂ 0 ρ ∂ t + ∇ ⋅ ( ρ u ) = 0 (10-1) \frac{∂_0 ρ}{∂t}+∇⋅(ρ \mathbf{u})=0 \tag{10-1} ∂t∂0ρ+∇⋅(ρu)=0(10-1)
∂ 0 ( ρ u ) ∂ t + ∇ ⋅ ( ρ u u + P ( 0 ) ) = ρ a (10-2) \frac{∂_0 (ρu)}{∂t}+∇⋅(ρ \mathbf{uu}+P^{(0)}) = ρ \mathbf{a} \tag{10-2} ∂t∂0(ρu)+∇⋅(ρuu+P(0))=ρa(10-2)
∂ 0 ( ρ E ) ∂ t + ∇ ⋅ ( ρ u E + P ( 0 ) ⋅ u + Q ( 0 ) ) = ρ a ⋅ u (10-3) \frac{∂_0(\rho E)}{∂t} + ∇⋅(\rho \mathbf{u}E + P^{(0)} ⋅ \mathbf{u} + \mathbf{Q}^{(0)})=\rho \mathbf{a⋅u} \tag{10-3} ∂t∂0(ρE)+∇⋅(ρuE+P(0)⋅u+Q(0))=ρa⋅u(10-3)
以及 O ( ε n ) O({\varepsilon}^n) O(εn) 方程组为 ( n > 0 ) (n>0) (n>0) :
∂ n ρ ∂ t = 0 (11-1) \frac{∂_n ρ}{∂t}=0 \tag{11-1} ∂t∂nρ=0(11-1)
∂ n ( ρ u ) ∂ t + ∇ ⋅ P ( n ) = 0 (11-2) \frac{∂_n (ρu)}{∂t}+∇ ⋅ P^{(n)} = 0 \tag{11-2} ∂t∂n(ρu)+∇⋅P(n)=0(11-2)
∂ n ( ρ E ) ∂ t + ∇ ⋅ ( P ( n ) ⋅ u + Q ( n ) ) = 0 (11-3) \frac{∂_n (\rho E)}{∂t} + ∇⋅( P^{(n)} ⋅ \mathbf{u} + \mathbf{Q}^{(n)} ) = 0 \tag{11-3} ∂t∂n(ρE)+∇⋅(P(n)⋅u+Q(n))=0(11-3)
其中
C
=
ξ
−
u
,
P
(
n
)
=
m
∫
C
C
f
(
n
)
d
ξ
,
Q
(
n
)
=
m
∫
C
C
2
2
f
(
n
)
d
ξ
C=\boldsymbol{ξ-u}, P^{(n)}=m∫CCf^{(n)} \mathrm{d}ξ , Q^{(n)}=m∫C \frac{C^2}{2} f^{(n)} \mathrm{d}ξ
C=ξ−u,P(n)=m∫CCf(n)dξ,Q(n)=m∫C2C2f(n)dξ
只需取精确到 O ( ε 1 ) O({\varepsilon}^1) O(ε1)的宏观方程组进行分析,即可还原出Naiver-Stokes方程。且具有如下关系:
P = P ( 0 ) + ε P ( 1 ) = p I − 2 ε μ ( S − T r ( S ) 3 I ) P=P^{(0)} + \varepsilon P^{(1)} = p \mathbf{I} - 2 \varepsilon \mu (\mathbf{S} - \frac{\mathrm{Tr}(S)}{3} \mathbf{I}) P=P(0)+εP(1)=pI−2εμ(S−3Tr(S)I)
Q = Q ( 0 ) + ε Q ( 1 ) = − ε κ ∇ T Q = Q^{(0)} + \varepsilon Q^{(1)} = - \varepsilon \kappa \nabla{T} Q=Q(0)+εQ(1)=−εκ∇T
其中: κ \kappa κ为热传导系数, μ \mu μ 为粘性系数。
离散的LBGK方程也可采用类似的方法展开,还原出宏观流体运动方程(见附录A)。展开方式如下:
f i = f i ( 0 ) + ε f i ( 1 ) + ε 2 f i ( 2 ) + . . . f_i = f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} + ... fi=fi(0)+εfi(1)+ε2fi(2)+...
∂ ∂ x = ε ∂ ∂ x 1 , x 1 = ε x , ∂ ∂ t = ε ∂ ∂ t 1 + ε 2 ∂ ∂ t 2 , F i = ε F i ( 1 ) \frac{\partial}{\partial x} = \varepsilon \frac{\partial}{\partial x_1} , x_1 = \varepsilon x, \frac{\partial}{\partial t}=\varepsilon \frac{\partial}{\partial t_1}+\varepsilon^2 \frac{\partial}{\partial t_2}, F_i = \varepsilon F_i^{(1)} ∂x∂=ε∂x1∂,x1=εx,∂t∂=ε∂t1∂+ε2∂t2∂,Fi=εFi(1)
略去 O ( ε 3 ) O({\varepsilon}^3) O(ε3)项,并对 O ( ε 0 ) O({\varepsilon}^0) O(ε0)项、 O ( ε 1 ) O({\varepsilon}^1) O(ε1)项和 O ( ε 2 ) O({\varepsilon}^2) O(ε2)项求0阶和1阶速度矩,即可得到不可压缩流体的Navier-Stokes方程。由于在分析过程中略去了 O ( ε 3 ) O({\varepsilon}^3) O(ε3)项和速度的3阶项,导致结果缺失了部分物理信息。
三、 Grad-13矩方法及其发展
3.1 Grad的矩分析方法
Grad -13矩是一种由数学家Harold Grad提出的分析方法,其基于Hermite多项式进行分析。对于一个长度为 N N N 的向量 x \boldsymbol{x} x ,若定义权函数
ω ( x ) = 1 ( 2 π ) N / 2 e x p ( − x ⋅ x 2 ) (12) \omega( \boldsymbol{x}) = \frac{1}{(2 \pi)^{N/2}} \mathrm{exp} \left(- \frac{ \boldsymbol{x} \cdot \boldsymbol{x}}{2} \right) \tag{12} ω(x)=(2π)N/21exp(−2x⋅x)(12)
则其对应的 n n n阶Hermite多项式写作
H
(
n
)
(
x
)
=
(
−
1
)
n
ω
(
x
)
∇
n
ω
(
x
)
(13)
\mathcal{H} ^{(n)} ( \boldsymbol{x}) = \frac{(-1)^n}{\omega ( \boldsymbol{x})} \nabla^{n} \omega ( \boldsymbol{x}) \tag{13}
H(n)(x)=ω(x)(−1)n∇nω(x)(13)
由Hermite多项式的正交性,可证明得到:
∫ − ∞ + ∞ ω ( x ) H i ( m ) ( x ) H j ( n ) ( x ) d x = δ m n δ i j (14) ∫_{-∞}^{+∞} \omega ( \boldsymbol{x}) H_i^{(m)}( \boldsymbol{x}) H_j^{(n)}( \boldsymbol{x}) \rm{d} \boldsymbol{x} = \delta_{mn} \delta_{ij} \tag{14} ∫−∞+∞ω(x)Hi(m)(x)Hj(n)(x)dx=δmnδij(14)
据此,可将任意一个函数 f ( x ) f(x) f(x) 使用Hermite多项式进行展开1。即:
f
(
x
)
=
ω
1
2
∑
n
=
0
∞
∑
i
=
1
N
a
i
(
n
)
H
i
(
n
)
(
x
)
(15)
f( \boldsymbol{x})=ω^{\frac{1}{2}} \sum_{n=0}^∞ \sum_{i=1}^N a_i^{(n)} H_i^{(n)}( \boldsymbol{x}) \tag{15}
f(x)=ω21n=0∑∞i=1∑Nai(n)Hi(n)(x)(15)
所以
∫ − ∞ − ∞ ω 1 / 2 f ( x ) H j ( m ) ( x ) d x = ∑ i = 1 N a i ( m ) δ i j m = m ! a i m (16) \int_{-\infty}^{-\infty} \omega^{1/2} f(x) \mathcal{H}_j^{(m)} (x) \mathrm{d} \it{x} = \sum_{i=\mathrm{1}}^{N} a_i^{\mathrm{(}m\mathrm{)}} \delta_{ij}^m = m\mathrm{!} a_i^{m} \mathrm{\tag{16}} ∫−∞−∞ω1/2f(x)Hj(m)(x)dx=i=1∑Nai(m)δijm=m!aim(16)
其中
a
i
(
m
)
a_i^{(m)}
ai(m) 可借由Hermite多项式的正交性进行求解。
δ
i
j
m
\delta_{ij}^{m}
δijm 是一个记号,表示
m
m
m个
δ
i
j
\delta_{ij}
δij的乘积之和,
i
i
i 和
j
j
j 分别来自下标集
(
i
1
,
i
2
,
.
.
.
,
i
m
)
(i_1 , i_2 , ... , i_m)
(i1,i2,...,im) 和
(
j
1
,
j
2
,
.
.
.
,
j
m
)
(j_1 , j_2 , ... , j_m)
(j1,j2,...,jm) 。
在此数学基础之上,Harold Grad将分布函数
f
f
f 展开为2:
f ( x , ξ , t ) = ω ∑ n = 0 ∞ 1 n ! a ( n ) H ( n ) ( ξ ) (17) f(x, \xi, t) = \omega \sum_{n=0}^{\infty} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{17} f(x,ξ,t)=ωn=0∑∞n!1a(n)H(n)(ξ)(17)
根据式(16), a ( n ) a^{(n)} a(n)的表达式为:
a ( n ) = ∫ − ∞ + ∞ f ( x , ξ , t ) H ( n ) ( ξ ) d ξ (18) a^{(n)} = \int_{-\infty}^{+\infty} f(x, \xi, t) H^{(n)}(\xi) d\xi \tag{18} a(n)=∫−∞+∞f(x,ξ,t)H(n)(ξ)dξ(18)
可得 a ( n ) a^{(n)} a(n)的前4项为:
a ( 0 ) = ∫ − ∞ + ∞ f ( x , ξ , t ) d ξ = ρ (19-1) a^{(0)} = \int_{-\infty}^{+\infty} f(x, \xi, t) d\xi= \rho \tag{19-1} a(0)=∫−∞+∞f(x,ξ,t)dξ=ρ(19-1)
a ( 1 ) = ∫ − ∞ + ∞ f ( x , ξ , t ) ξ d ξ = ρ u (19-2) a^{(1)} = \int_{-\infty}^{+\infty} f(x, \xi, t) \xi d\xi = \rho u \tag{19-2} a(1)=∫−∞+∞f(x,ξ,t)ξdξ=ρu(19-2)
a ( 2 ) = ∫ − ∞ + ∞ f ( x , ξ , t ) ( ξ 2 − δ ) d ξ = ρ ( u 2 − δ ) + P (19-3) a^{(2)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^2 - \delta) d\xi = \rho (\mathbf{u}^2 - \mathbf{\delta}) + \mathbf{P} \tag{19-3} a(2)=∫−∞+∞f(x,ξ,t)(ξ2−δ)dξ=ρ(u2−δ)+P(19-3)
a ( 3 ) = ∫ − ∞ + ∞ f ( x , ξ , t ) ( ξ 3 − ξ δ ) d ξ = ( D − 1 ) ρ u 3 + u a ( 2 ) + Q (19-4) a^{(3)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^3 - \xi \delta) d\xi = (D-1) \rho \bf{u}^3 + \bf{u} \it{a}^{\rm{(2)}} \rm{+} \mathbf{Q} \tag{19-4} a(3)=∫−∞+∞f(x,ξ,t)(ξ3−ξδ)dξ=(D−1)ρu3+ua(2)+Q(19-4)
注意到从 a ( 0 ) a^{(0)} a(0)到 a ( 3 ) a^{(3)} a(3) 都描述了流场的宏观量,所以通过上述表达式的值可以解出流场宏观量。与C-E分析方法不同的是分析过程中没有舍去高阶量。因此这种展开方法得到的式子合理地引入了更高阶的矩,物理意义更加明确。
3.2 Gauss-Hermite积分的引入和离散化BGK方程
Grad的思路开创了描述的新方式,而单肖文、袁学锋、陈沪东三位学者在此基础上进一步发展,于2006年在 Journal of Fluid Mechanics 上提出了将原思路拓展到离散的Boltzmann-BGK方程中的方法3,简化了求解过程。
首先,基于式(16)将
f
f
f 截断至前
N
N
N 阶,得:
f ≈ f N = ω ∑ n = 0 N 1 n ! a ( n ) H ( n ) ( ξ ) (20) f \approx f^N = \omega \sum_{n=0}^{N} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{20} f≈fN=ωn=0∑Nn!1a(n)H(n)(ξ)(20)
f N f^N fN 和 f f f 有着完全相同的前 N N N 阶矩。通过截断操作将BGK方程对宏观流动方程的近似保持在动力学层面而不是热力学层面。此时 f N f^N fN可表示为:
f N ( x , ξ , t ) H ( n ) ( ξ ) = ω ( ξ ) p ( x , ξ , t ) (21) f^{N}(x, \xi , t) H^{(n)}(\xi) = \omega(\xi) p(x, \xi, t) \tag{21} fN(x,ξ,t)H(n)(ξ)=ω(ξ)p(x,ξ,t)(21)
其中 p ( x , ξ , t ) p(x, \xi, t) p(x,ξ,t) 为阶数不超过 2 N 2N 2N 的多项式。使用Gauss-Hermite积分可将 a ( n ) a^{(n)} a(n) 精确地展开为 p ( x , ξ , t ) p(x, \xi, t) p(x,ξ,t) 的加权和。
a ( n ) = ∫ ω ( ξ ) p ( x , ξ , t ) d ξ = ∑ a = 1 d w a p ( x , ξ a , t ) = ∑ a = 1 d w a ω ( ξ a ) f N ( x , ξ a , t ) H ( n ) ( ξ a ) (22) a^{(n)} =\int \omega(\xi) p(x, \xi, t) d \xi = \sum_{a=1}^{d} w_a p(x, \xi_a, t) = \sum_{a=1}^{d} \frac{w_a}{\omega(\xi_a)} f^{N}(x, \xi_a, t) H^{(n)}(\xi_a) \tag{22} a(n)=∫ω(ξ)p(x,ξ,t)dξ=a=1∑dwap(x,ξa,t)=a=1∑dω(ξa)wafN(x,ξa,t)H(n)(ξa)(22)
式(22)中
w
a
w_a
wa 和
ξ
a
\boldsymbol{\xi}_a
ξa 是Gauss-Hermite积分的权重和特征向量(
a
=
1
,
2
,
.
.
.
,
d
a=1,2,...,d
a=1,2,...,d )。所以使用
f
N
(
x
,
ξ
a
,
t
)
f^N (x, \boldsymbol{\xi}_a, t)
fN(x,ξa,t) 表示
f
N
f^N
fN 的前
N
N
N 阶矩在数学上可行。
据此可定义离散化的分布函数
f
a
f_a
fa (
a
=
1
,
2
,
.
.
.
,
d
a=1,2,...,d
a=1,2,...,d ),其对应的权重和特征方向为
w
a
w_a
wa 和
ξ
a
\xi_a
ξa :
f a ( x , t ) = w a ω ( ξ a ) f ( x , ξ a , t ) (23) f_a (x,t) = \frac{w_a}{\omega( \boldsymbol{\xi}_a)} f(x, \boldsymbol{\xi}_a, t) \tag{23} fa(x,t)=ω(ξa)waf(x,ξa,t)(23)
则宏观量可表达为:
ρ = ∑ a = 1 d f a , ρ u = ∑ a = 1 d f a ξ a , ρ u u + P = ∑ a = 1 d f a ξ a ξ a (24) \rho = \sum_{a=1}^{d} f_a , \rho \mathbf{u} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a , \rho \mathbf{uu} + \mathbf{P} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a \mathbf{\xi}_a \tag{24} ρ=a=1∑dfa,ρu=a=1∑dfaξa,ρuu+P=a=1∑dfaξaξa(24)
下面将(1)式的碰撞项换为(2)式,并把 F m ∂ f ∂ ξ \frac{\mathbf{F}}{m} \frac{\partial f}{\partial \xi} mF∂ξ∂f 直接记作外力项 − F ( ξ ) -\mathbf{F} (\xi) −F(ξ) ,得
∂ f ∂ t + ξ ⋅ ∂ f ∂ x = − 1 τ ( f − f ( e q ) ) + F ( ξ ) (25) \frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = \frac{-1}{\tau} ( f - f^{(eq)} ) + \mathbf{F} (\xi) \tag{25} ∂t∂f+ξ⋅∂x∂f=τ−1(f−f(eq))+F(ξ)(25)
对式(25),令 ξ = ξ a \boldsymbol{\xi} = \boldsymbol{\xi}_a ξ=ξa ,并在两端乘上 $ \frac{w_a}{\omega( \boldsymbol{\xi}_a)}$ ,即可得到使用 f a f_a fa 离散的方程( a = 1 , 2 , . . . , d a=1,2,...,d a=1,2,...,d ):
∂ f a ∂ t + ξ a ⋅ ∇ f a = − 1 τ ( f a − f a ( e q ) ) + F a (26-1) \frac{\partial f_a}{\partial t} + \xi_a \cdot \nabla{f_a} = -\frac{1}{\tau} ( f_a - f_a^{(eq)} ) + F_a \tag{26-1} ∂t∂fa+ξa⋅∇fa=−τ1(fa−fa(eq))+Fa(26-1)
f a ( e q ) = w a ω ( ξ a ) f ( e q ) ( ξ a ) (26-2) f_a^{(eq)} = \frac{w_a}{\omega (\xi_a)} f^{(eq)} (\xi_a) \tag{26-2} fa(eq)=ω(ξa)waf(eq)(ξa)(26-2)
F a = w a ω ( ξ a ) F ( ξ a ) (26-3) F_a = \frac{w_a}{\omega (\xi_a)} \mathbf{F} (\xi_a) \tag{26-3} Fa=ω(ξa)waF(ξa)(26-3)
此时只需将 f ( e q ) f^{(eq)} f(eq) 和 F F F 进行类似的展开,即可完成对整个系统的离散。
附录A. 使用C-E展开方法将离散的LBGK方程还原为Navier-Stokes方程
LBE方程为(A-1.1)式。源项 F \boldsymbol{F} F 和 f ( e q ) f^{(\rm{eq})} f(eq) 为由郭照立、郑楚光和施保昌提出的格式,即(A-1.2)式和(A-1.3)式。[注意,这里的 f f f 是密度分布函数]
f i ( x + ξ i Δ t , t + Δ t ) − f i ( x , t ) = − 1 τ [ f i ( x , t ) − f i ( e q ) ( x , t ) ] + Δ t ⋅ F i ( x , t ) (A-1.1) f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right]+Δt⋅F_i (x,t) \tag{A-1.1} fi(x+ξiΔt,t+Δt)−fi(x,t)=−τ1[fi(x,t)−fi(eq)(x,t)]+Δt⋅Fi(x,t)(A-1.1)
F i = ( 1 − Δ t 2 τ ) w i [ ξ i − u c s 2 + ( ξ i ⋅ u ) ξ i c s 4 ] ⋅ F (A-1.2) F_i=(1 - \frac{Δt}{2τ}) w_i \left[ \frac{\mathbf{\xi_i-u} }{c_s^2 } + \frac{\mathbf{(\xi_i \cdot u) \xi_i} }{c_s^4} \right] ⋅ F \tag{A-1.2} Fi=(1−2τΔt)wi[cs2ξi−u+cs4(ξi⋅u)ξi]⋅F(A-1.2)
f i ( e q ) ( x , t ) = ρ w i [ 1 + ξ i ⋅ u c s 2 + u u : ( ξ i ξ i − c s 2 I ) 2 c s 4 ] (A-1.3) f_i^{(eq)} (x,t) = \rho w_i \left[ 1 + \frac{\mathbf{ξ_i⋅u}}{c_s^2} +\frac{ \mathbf{uu} : ( \mathbf{ξ_i ξ_i} - c_s^2 \mathbf{I}) }{2c_s^4} \right] \tag{A-1.3} fi(eq)(x,t)=ρwi[1+cs2ξi⋅u+2cs4uu:(ξiξi−cs2I)](A-1.3)
并且对于 f i f_i fi 和 f i ( e q ) f_i^{(eq)} fi(eq) 有:
{ ρ = ∑ i f i ρ u = ∑ i ξ i f i + Δ t 2 F \begin{cases} \rho = \sum_i {f_i} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i} + \frac{\Delta t}{2} F \end{cases} {ρ=∑ifiρu=∑iξifi+2ΔtF
和
{ ρ = ∑ i f i ( e q ) ρ u = ∑ i ξ i f i ( e q ) ρ ( u u + c s 2 I ) = ∑ i ξ i ξ i f i ( e q ) \begin{cases} \rho = \sum_i {f_i^{(eq)}} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i^{(eq)}} \\ \rho (\mathbf{uu} + c_s^2 \mathbf{I}) = \sum_i {\mathbf{\xi_i \xi_i} f_i^{(eq)}} \end{cases} ⎩ ⎨ ⎧ρ=∑ifi(eq)ρu=∑iξifi(eq)ρ(uu+cs2I)=∑iξiξifi(eq)
将(A-1.1)式在
(
x
,
t
)
(\mathbf{x} , t)
(x,t)处展开,取至 2 阶项得:
Δ
t
∂
f
i
∂
t
+
ξ
i
Δ
t
⋅
∂
f
i
∂
x
+
1
2
[
Δ
t
2
∂
2
f
i
∂
t
2
+
2
Δ
t
(
ξ
i
Δ
t
)
⋅
∂
2
f
i
∂
t
∂
x
+
Δ
t
2
(
ξ
i
ξ
i
)
:
∂
2
f
i
∂
x
2
]
+
1
τ
[
f
i
−
f
i
(
e
q
)
]
−
Δ
t
F
i
=
0
(A-2)
\begin{aligned} Δt \frac{∂f_i}{∂t} + ξ_i Δt ⋅ \frac{∂f_i}{∂x} &+ \frac{1}{2} \left[Δt^2 \frac{∂^2 f_i}{∂t^2} + 2Δt(\xi_i Δt) ⋅ \frac{∂^2 f_i}{∂t∂x} + Δt^2 (\xi_i \xi_i): \frac{∂^2 f_i}{∂x^2} \right] \\ &+ \frac{1}{\tau } \left[f_i - f_i^{(eq)} \right] - Δt F_i=0 \end{aligned} \tag{A-2}
Δt∂t∂fi+ξiΔt⋅∂x∂fi+21[Δt2∂t2∂2fi+2Δt(ξiΔt)⋅∂t∂x∂2fi+Δt2(ξiξi):∂x2∂2fi]+τ1[fi−fi(eq)]−ΔtFi=0(A-2)
代入多尺度展开等式,并舍去
ε
3
\varepsilon^3
ε3 项和更高阶的项,可得:
(
ε
∂
f
i
(
0
)
∂
t
1
+
ε
2
∂
f
i
(
1
)
∂
t
1
+
ε
2
∂
f
i
(
0
)
∂
t
2
)
+
ξ
i
⋅
(
ε
∂
f
i
(
0
)
∂
x
1
+
ε
2
∂
f
i
(
1
)
∂
x
1
)
+
Δ
t
2
[
ε
2
∂
2
f
i
(
0
)
∂
t
1
2
+
2
ξ
i
ε
2
⋅
∂
2
f
i
(
0
)
∂
t
1
∂
x
1
+
(
ξ
i
ξ
i
)
:
(
ε
2
∂
2
f
i
(
0
)
∂
x
2
)
]
+
1
τ
Δ
t
[
f
i
(
0
)
+
ε
f
i
(
1
)
+
ε
2
f
i
(
2
)
−
f
i
(
e
q
)
]
−
ε
F
i
(
1
)
+
O
(
ε
3
)
=
0
(A-3)
\begin{aligned} (ε \frac{∂f_i^{(0)}}{∂t_1} + ε^2 \frac{∂f_i^{(1)}}{∂t_1} &+ ε^2 \frac{∂f_i^{(0)}}{∂t_2} ) + \xi_i ⋅ (\varepsilon \frac{∂f_i^{(0)}}{∂x_1} + \varepsilon^2 \frac{∂f_i^{(1)}}{∂x_1}) \\ &+ \frac{Δt}{2} \left[ \varepsilon^2 \frac{∂^2 f_i^{(0)}}{∂t_1^2} + 2 \xi_i \varepsilon^2 ⋅ \frac{∂^2 f_i^{(0)}}{∂t_1 ∂x_1} + (\xi_i \xi_i) : (\varepsilon^2 \frac{∂^2 f_i^{(0)}}{∂x^2} ) \right] \\ &+ \frac{1}{τΔt} \left[ f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} -f_i^{(eq)} \right] - \varepsilon F_i^{(1)} + O(\varepsilon^3 )=0 \end{aligned} \tag{A-3}
(ε∂t1∂fi(0)+ε2∂t1∂fi(1)+ε2∂t2∂fi(0))+ξi⋅(ε∂x1∂fi(0)+ε2∂x1∂fi(1))+2Δt[ε2∂t12∂2fi(0)+2ξiε2⋅∂t1∂x1∂2fi(0)+(ξiξi):(ε2∂x2∂2fi(0))]+τΔt1[fi(0)+εfi(1)+ε2fi(2)−fi(eq)]−εFi(1)+O(ε3)=0(A-3)
从(A-3)式中提取
O
(
ε
0
)
O({\varepsilon}^0)
O(ε0)项、
O
(
ε
1
)
O({\varepsilon}^1)
O(ε1)项和
O
(
ε
2
)
O({\varepsilon}^2)
O(ε2)项,并令
D
k
=
∂
∂
t
k
+
ξ
k
⋅
∂
∂
x
k
D_k = \frac{\partial}{\partial t_k} + \xi_k \cdot \frac{\partial}{\partial \mathbf{x}_k}
Dk=∂tk∂+ξk⋅∂xk∂ 。(A-3)式对任意
ε
\varepsilon
ε 都成立,则关于各阶的系数均为0,即:
O
(
ε
0
)
=
1
τ
Δ
t
(
f
i
(
0
)
−
f
i
(
e
q
)
)
=
0
(A-4.1)
O({\varepsilon}^0) = \frac{1}{\tau \Delta t} (f_i^{(0)} - f_i^{(eq)}) = 0 \tag{A-4.1}
O(ε0)=τΔt1(fi(0)−fi(eq))=0(A-4.1)
O
(
ε
1
)
=
D
1
f
i
(
0
)
+
f
i
(
1
)
τ
Δ
t
−
F
i
(
1
)
=
0
(A-4.2)
O(\varepsilon^1) = D_1 f_i^{(0)} + \frac{ f_i^{(1)} }{\tau \Delta t} - F_i^{(1)} = 0 \tag{A-4.2}
O(ε1)=D1fi(0)+τΔtfi(1)−Fi(1)=0(A-4.2)
O
(
ε
2
)
=
∂
f
i
(
0
)
∂
t
2
+
(
1
−
1
2
τ
)
D
1
f
i
(
1
)
+
f
i
(
2
)
τ
Δ
t
+
Δ
t
2
D
1
F
i
(
1
)
=
0
(A-4.3)
O(\varepsilon^2) = \frac{\partial f_i^{(0)}}{\partial t_2} + (1 - \frac{1}{2\tau}) D_1 f_i^{(1)} + \frac{ f_i^{(2)} }{\tau \Delta t} + \frac{\Delta t}{2} D_1 F_i^{(1)} = 0 \tag{A-4.3}
O(ε2)=∂t2∂fi(0)+(1−2τ1)D1fi(1)+τΔtfi(2)+2ΔtD1Fi(1)=0(A-4.3)
根据多尺度展开的变量关系,可得:
∑
i
f
i
(
1
)
=
∑
i
f
i
(
2
)
=
0
\sum_i {f_i^{(1)}} = \sum_i {f_i^{(2)}} = 0
∑ifi(1)=∑ifi(2)=0 ,
∑
i
ξ
i
f
i
(
2
)
=
0
\sum_i { \xi_i f_i^{(2)}} = 0
∑iξifi(2)=0 ,
∑
i
ξ
i
f
i
(
1
)
=
−
Δ
t
2
F
i
(
1
)
\sum_i { \xi_i f_i^{(1)}} = - \frac{\Delta t}{2} F_i^{(1)}
∑iξifi(1)=−2ΔtFi(1)
{
∑
i
F
i
=
0
∑
i
ξ
i
F
i
=
(
1
−
1
2
τ
)
F
∑
i
ξ
i
ξ
i
F
i
=
(
1
−
1
2
τ
)
2
u
F
\left\{\begin{matrix} \sum_{i} {F_i} = 0 \\ \sum_{i} {\xi_i F_i} = (1 - \frac{1}{2 \tau}) F \\ \sum_{i} {\xi_i \xi_i F_i} = (1 - \frac{1}{2 \tau}) 2 u F \end{matrix}\right.
⎩
⎨
⎧∑iFi=0∑iξiFi=(1−2τ1)F∑iξiξiFi=(1−2τ1)2uF
{
∑
i
F
i
(
1
)
=
0
∑
i
ξ
i
F
i
(
1
)
=
(
1
−
1
2
τ
)
F
(
1
)
∑
i
ξ
i
ξ
i
F
i
(
1
)
=
(
1
−
1
2
τ
)
2
u
F
(
1
)
\left\{\begin{matrix} \sum_{i} {F_i^{(1)}} = 0 \\ \sum_{i} {\xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) F^{(1)} \\ \sum_{i} {\xi_i \xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) 2 u F^{(1)} \end{matrix}\right.
⎩
⎨
⎧∑iFi(1)=0∑iξiFi(1)=(1−2τ1)F(1)∑iξiξiFi(1)=(1−2τ1)2uF(1)
为方便下文分析,记: Π ( k ) = ∑ i ξ i ξ i f i ( k ) \Pi^{(k)} = \sum_i { \xi_i \xi_i f_i^{(k)} } Π(k)=∑iξiξifi(k) , Γ ( k ) = ∑ i ξ i ξ i ξ i f i ( k ) \Gamma^{(k)} = \sum_i { \xi_i \xi_i \xi_i f_i^{(k)} } Γ(k)=∑iξiξiξifi(k) 。
对 O ( ε 1 ) O({\varepsilon}^1) O(ε1)项求1阶和2阶速度矩,得:
∂ ρ ∂ t 1 + ∂ ( ρ u ) ∂ x 1 = 0 (A-5.1) \frac{\partial \rho}{\partial t_1} + \frac{\partial (\rho u)}{\partial x_1} = 0 \tag{A-5.1} ∂t1∂ρ+∂x1∂(ρu)=0(A-5.1)
∂ ( ρ u ) ∂ t 1 + ∂ Π ( 0 ) ∂ x 1 = 0 (A-5.2) \frac{\partial (\rho u)}{\partial t_1} + \frac{\partial \Pi^{(0)}}{\partial x_1} = 0 \tag{A-5.2} ∂t1∂(ρu)+∂x1∂Π(0)=0(A-5.2)
Π ( 0 ) = ρ ( u u + c s 2 I ) (A-5.3) \Pi^{(0)} = \rho (\it{\bf{uu}} \rm{+} c_s^2 \bf{I}) \tag{A-5.3} Π(0)=ρ(uu+cs2I)(A-5.3)
对 O ( ε 2 ) O({\varepsilon}^2) O(ε2)项求1阶和2阶速度矩,得:
∂ ρ ∂ t 2 = 0 (A-6.1) \frac{\partial {\rho}}{\partial t_{2}} = 0 \tag{A-6.1} ∂t2∂ρ=0(A-6.1)
∂ ( ρ u ) ∂ t 2 + ( 1 − 1 2 τ ) ∂ Π ( 1 ) ∂ x 1 + Δ t ( 1 − 1 2 τ ) ∂ F ( 1 ) ∂ x 1 = 0 (A-6.2) \frac{\partial (\rho \boldsymbol{u})}{\partial t_{2}} + (1 - \frac{1}{2 \tau}) \frac{\partial \Pi^{(1)}}{\partial \boldsymbol{x}_{1}} + \Delta t (1 - \frac{1}{2 \tau}) \frac{\partial \boldsymbol{F}^{(1)}}{\partial \boldsymbol{x}_{1}} = 0 \tag{A-6.2} ∂t2∂(ρu)+(1−2τ1)∂x1∂Π(1)+Δt(1−2τ1)∂x1∂F(1)=0(A-6.2)
由(A-4.2)式,得: f i ( 1 ) = τ Δ t { D 1 f i ( 0 ) − F i ( 1 ) } f_i^{(1)} = \tau \Delta t \{ D_1 f_i^{(0)} - F_i^{(1)}\} fi(1)=τΔt{D1fi(0)−Fi(1)} ,所以
Π ( 1 ) = ∑ i ξ i ξ i f i ( 1 ) = − τ Δ t [ ∂ ( ρ u u ) ∂ t 1 + c s 2 ∂ ( ρ I ) ∂ t 1 + ∂ Γ ( 0 ) ∂ x 1 − ( 1 − 1 2 τ ) 2 u F ( 1 ) ] (A-7) \Pi^{(1)} = \sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}^{(1)} = -\tau \Delta t [\frac{\partial (\rho \boldsymbol{u} \boldsymbol{u})}{\partial t_{1}} + c_s^2 \frac{\partial (\rho \boldsymbol{I})}{\partial t_{1}} + \frac{\partial \Gamma^{(0)}}{\partial \boldsymbol{x}_{1}} - (1 - \frac{1}{2 \tau}) 2\boldsymbol{uF^{(1)}} ] \tag{A-7} Π(1)=i∑ξiξifi(1)=−τΔt[∂t1∂(ρuu)+cs2∂t1∂(ρI)+∂x1∂Γ(0)−(1−2τ1)2uF(1)](A-7)
u F ( 1 ) \boldsymbol{uF^{(1)}} uF(1)是Grad的论文中的记号, ( u F ( 1 ) ) l m = 1 2 ( u l F m ( 1 ) + u m F l ( 1 ) ) ( \bf{\it{uF}}^{(1)} )_{\it{lm}} = \rm{\frac{1}{2}} (\it{ u_l F_m^{(1)} + u_m F_l^{(1)} } \rm{)} (uF(1))lm=21(ulFm(1)+umFl(1)) 。下文为方便分析,取 Π l m ( 1 ) \Pi_{lm}^{(1)} Πlm(1) 分析。
对第1项,有: ∂ ( ρ u l u m ) ∂ t 1 = ρ u l ∂ u m ∂ t 1 + u m ∂ ( ρ u l ) ∂ t 1 \frac{\partial (\rho u_l u_m)}{\partial t_1} = \rho u_l \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial (\rho u_l)}{\partial t_1} ∂t1∂(ρulum)=ρul∂t1∂um+um∂t1∂(ρul) 。由(A-5.2)式,可得4:
ρ ∂ u m ∂ t 1 + u m ∂ ρ ∂ t 1 + ∂ ∂ x 1 n ( ρ u m u n + ρ c s 2 δ m n ) = F m ( 1 ) (A-8.1) \rho \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial \rho}{\partial t_1} + \frac{\partial}{\partial x_{1n}} \left( \rho u_m u_n + \rho c_s^2 \delta_{mn} \right) = F_m^{(1)} \tag{A-8.1} ρ∂t1∂um+um∂t1∂ρ+∂x1n∂(ρumun+ρcs2δmn)=Fm(1)(A-8.1)
∂ ( ρ u l ) ∂ t 1 + ∂ ∂ x 1 n ( ρ u l u n + ρ c s 2 δ l n ) = F l ( 1 ) (A-8.2) \frac{\partial (\rho u_l)}{\partial t_1}+ \frac{\partial}{\partial x_{1n}} \left( \rho u_l u_n + \rho c_s^2 \delta_{ln} \right) = F_l^{(1)} \tag{A-8.2} ∂t1∂(ρul)+∂x1n∂(ρulun+ρcs2δln)=Fl(1)(A-8.2)
并且
∂ ( ρ u l u m u n ) ∂ x 1 n = − u l u m ∂ ( ρ u n ) ∂ x 1 n + u l ∂ ( ρ u m u n ) ∂ x 1 n + u m ∂ ( ρ u l u n ) ∂ x 1 n (A-8.3) \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} = - u_l u_m \frac{\partial (\rho u_n)}{\partial x_{1n}} + u_l \frac{\partial (\rho u_m u_n)}{\partial x_{1n}} + u_m \frac{\partial (\rho u_l u_n)}{\partial x_{1n}} \tag{A-8.3} ∂x1n∂(ρulumun)=−ulum∂x1n∂(ρun)+ul∂x1n∂(ρumun)+um∂x1n∂(ρulun)(A-8.3)
所以
∂
(
ρ
u
l
u
m
)
∂
x
1
n
=
(
u
l
F
m
(
1
)
+
u
m
F
l
(
1
)
)
−
∂
(
ρ
u
l
u
m
u
n
)
∂
x
1
n
−
c
s
2
(
u
l
∂
ρ
∂
x
1
m
+
u
m
∂
ρ
∂
x
1
l
)
(A-8.4)
\frac{\partial (\rho u_l u_m)}{\partial x_{1n}} = (u_l F_m^{(1)} + u_m F_l^{(1)}) - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} - c_s^2 \left( u_l \frac{\partial \rho}{\partial x_{1m}} + u_m \frac{\partial \rho}{\partial x_{1l}} \right) \tag{A-8.4}
∂x1n∂(ρulum)=(ulFm(1)+umFl(1))−∂x1n∂(ρulumun)−cs2(ul∂x1m∂ρ+um∂x1l∂ρ)(A-8.4)
所以第2项的分量为: c s 2 δ l m ∂ ρ ∂ t 1 c_s^2 \delta_{lm} \frac{\partial \rho}{\partial t_1} cs2δlm∂t1∂ρ 。
对第3项的分量,由于
Γ
l
m
n
(
0
)
=
ρ
c
s
2
(
u
l
δ
m
n
+
u
n
δ
l
m
+
u
m
δ
l
n
)
\Gamma_{lmn}^{(0)} = \rho c_s^2 ( u_l \delta_{mn} + u_n \delta_{lm} + u_m \delta_{ln} )
Γlmn(0)=ρcs2(ulδmn+unδlm+umδln)
,所以:
∂ Γ l m n ( 0 ) ∂ x 1 n = c s 2 ( δ m n ∂ ρ u l ∂ x 1 n + δ l m ∂ ρ u n ∂ x 1 n + δ l n ∂ ρ u m ∂ x 1 n ) (A-8.5) \frac{\partial \Gamma_{lmn}^{(0)}}{\partial x_{1n}} = c_s^2 ( \delta_{mn} \frac{\partial \rho u_l}{\partial x_{1n}} + \delta_{lm} \frac{\partial \rho u_n}{\partial x_{1n}} + \delta_{ln} \frac{\partial \rho u_m}{\partial x_{1n}} ) \tag{A-8.5} ∂x1n∂Γlmn(0)=cs2(δmn∂x1n∂ρul+δlm∂x1n∂ρun+δln∂x1n∂ρum)(A-8.5)
所以
Π l m ( 1 ) = − τ Δ t [ − ∂ ( ρ u l u m u n ) ∂ x 1 n + 1 2 τ ( u l F m ( 1 ) + u m F l ( 1 ) ) + ρ c s 2 ( ∂ u l ∂ x 1 m + ∂ u m ∂ x 1 l ) ] (A-8.6) \Pi_{lm}^{(1)} = - \tau \Delta t \left[ - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} + \frac{1}{2 \tau} (u_l F_m^{(1)} + u_m F_l^{(1)}) + \rho c_s^2 ( \frac{\partial u_l}{\partial x_{1m}} + \frac{\partial u_m}{\partial x_{1l}} ) \right] \tag{A-8.6} Πlm(1)=−τΔt[−∂x1n∂(ρulumun)+2τ1(ulFm(1)+umFl(1))+ρcs2(∂x1m∂ul+∂x1l∂um)](A-8.6)
略去 Π l m ( 1 ) \Pi_{lm}^{(1)} Πlm(1) 中的速度的3阶项(即 ∂ ∂ x 1 n { ρ u l u m u n } \frac{\partial}{\partial x_{1n}} \{ \rho u_l u_m u_n \} ∂x1n∂{ρulumun} ),有
Π
(
1
)
=
−
Δ
t
⋅
u
F
(
1
)
−
τ
ρ
c
s
2
Δ
t
[
∂
u
∂
x
1
+
(
∂
u
∂
x
1
)
T
]
(A-9)
\Pi^{(1)} = - \Delta t \cdot \boldsymbol{u F}^{(1)} - \tau \rho c_s^2 \Delta t \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\rm{T}} \right] \tag{A-9}
Π(1)=−Δt⋅uF(1)−τρcs2Δt[∂x1∂u+(∂x1∂u)T](A-9)
回代(A-6.2)式,得等价形式为
∂ ( ρ u ) ∂ t 2 + c s 2 Δ t ( τ − 1 2 ) ∂ ∂ x 1 { ρ [ ∂ u ∂ x 1 + ( ∂ u ∂ x 1 ) T ] } = 0 (A-10) \frac{\partial (\rho \boldsymbol{u})}{\partial t_2} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial \boldsymbol{x_1}} \left\{ \rho \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\rm{T}} \right] \right\} = \boldsymbol{0} \tag{A-10} ∂t2∂(ρu)+cs2Δt(τ−21)∂x1∂{ρ[∂x1∂u+(∂x1∂u)T]}=0(A-10)
将(A-10)式和(A-5.2)式联立,得
∂ ( ρ u ) ∂ t + ∂ ( ρ u u ) ∂ x = − ∂ ( ρ c s 2 ) ∂ x + c s 2 Δ t ( τ − 1 2 ) ∂ ∂ x { ρ [ ∂ u ∂ x + ( ∂ u ∂ x ) T ] } + F (A-11) \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u)}{\partial x} = - \frac{\partial (\rho c_s^2)}{\partial x} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial x}\{\rho [\frac{\partial u}{\partial x} + (\frac{\partial u}{\partial x})^T ]\} + F \tag{A-11} ∂t∂(ρu)+∂x∂(ρuu)=−∂x∂(ρcs2)+cs2Δt(τ−21)∂x∂{ρ[∂x∂u+(∂x∂u)T]}+F(A-11)
此时令 p = c s 2 ρ p = c_s^2 \rho p=cs2ρ , ν = c s 2 Δ t ( τ − 1 2 ) \nu = c_s^2 \Delta t (\tau - \frac{1}{2}) ν=cs2Δt(τ−21) ,即可还原回Navier-Stokes方程
附录B.Gauss-Hermite积分
对于任意一维函数 f ( ξ ) f(\xi) f(ξ) ,高斯积分通过寻找积分点 ξ k \xi_k ξk 和其对应权重 w k w_k wk 实现对 ∫ a b ω ( ξ ) f ( ξ ) d ξ \int_{a}^{b} \omega(\xi) f(\xi) d \xi ∫abω(ξ)f(ξ)dξ 的近似,即
∫ a b ω ( ξ ) f ( ξ ) d ξ ≈ ∑ k = 1 n w k ξ k (B-1) \int_{a}^{b} \omega(\xi) f(\xi) d \xi \approx \sum_{k=1}^{n} w_k \xi_k \tag{B-1} ∫abω(ξ)f(ξ)dξ≈k=1∑nwkξk(B-1)
其中 ω ( ξ ) \omega (\xi) ω(ξ) 是任意的权重函数。n 点高斯求积的积分点正是对应的第n个正交多项式的根,此时 ξ k \xi_k ξk 对应的权重 w k w_k wk 为
w k = < P n − 1 , P n − 1 > P n − 1 ( ξ k ) P n ′ ( ξ k ) (B-2) w_k = \frac{ <P_{n-1}, P_{n-1}> }{ P_{n-1}(\xi_k) P_{n}^{'}(\xi_k) } \tag{B-2} wk=Pn−1(ξk)Pn′(ξk)<Pn−1,Pn−1>(B-2)
其中
P
n
′
=
d
P
n
d
x
P_{n}^{'} = \frac{d P_n}{d x}
Pn′=dxdPn 。(B-2)式的精度为
2
n
−
1
2n-1
2n−1 。
所以在一维Gauss-Hermite积分中,取
P
n
=
H
n
P_n = \mathcal{H}^{{n}}
Pn=Hn ,
H
n
\mathcal{H}^{{n}}
Hn 的权函数和表达式见(12)式和(13)式(下文同理)。 n点高斯求积的积分点即为
H
n
\mathcal{H}^{{n}}
Hn 的根。因为
d
H
n
d
ξ
=
ξ
H
n
−
H
n
+
1
=
n
H
n
−
1
\frac{d \mathcal{H}^{{n}}}{d \xi} = \xi \mathcal{H}^{{n}} - \mathcal{H}^{{n+1}} = n \mathcal{H}^{{n-1}}
dξdHn=ξHn−Hn+1=nHn−1 ,所以有
w k = n ! / [ n H ( n − 1 ) ( ξ k ) ] 2 (B-3) w_k = n! / [n \mathcal{H}^{(n-1)} (\xi_k)]^2 \tag{B-3} wk=n!/[nH(n−1)(ξk)]2(B-3)
对于更高维的情况,可做类似构造3。分析如下积分
1 ( 2 π ) D / 2 ∫ e x p ( − ξ ⋅ ξ 2 ) p ( ξ ) d ξ (B-4) \frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi \tag{B-4} (2π)D/21∫exp(−2ξ⋅ξ)p(ξ)dξ(B-4)
其中 ξ \xi ξ 是长度为D的向量。 p ( ξ ) p(\xi) p(ξ) 是D维n次多项式,可写为(B-5)式
p ( ξ ) = ∑ n 1 + n 2 + . . . + n D ≤ n a n 1 n 2 . . . n D ∏ j = 1 D ξ j n j (B-5) p(\xi) = \sum\limits_{n_1 + n_2 + ... +n_D \le n} {a_{n_1 n_2 ... n_D}} \prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} \tag{B-5} p(ξ)=n1+n2+...+nD≤n∑an1n2...nDj=1∏Dξjnj(B-5)
其中 a n 1 n 2 . . . n D a_{n_1 n_2 ... n_D} an1n2...nD为常数。
考虑(B-5)式中的任意一项 ∏ j = 1 D ξ j n j \prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} j=1∏Dξjnj (由于 a n 1 n 2 . . . n D a_{n_1 n_2 ... n_D} an1n2...nD 为常数所以可暂不处理,在最后一步被归并到常数项中),回代到式(B-4)中,得
1 ( 2 π ) D / 2 ∫ e x p ( − ξ ⋅ ξ 2 ) p ( ξ ) d ξ = ∏ j = 1 D ( 1 2 π ∫ e x p ( − ξ j 2 2 ) ξ j n j d ξ j ) = ∏ j = 1 D ( ∑ k = 1 n w k ξ k ) (B-6.1) \frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \prod\limits_{j=1}\limits^{D} \left( \frac{1}{\sqrt{2 \pi}} \int \mathrm{exp}(- \frac{\xi_{j}^2}{2}) \xi_j^{n_j} \mathrm{d}\xi_j \right) = \prod\limits_{j=1}\limits^{D} ( \sum\limits_{k=1}\limits^{n} w_k \xi_k ) \tag{B-6.1} (2π)D/21∫exp(−2ξ⋅ξ)p(ξ)dξ=j=1∏D(2π1∫exp(−2ξj2)ξjnjdξj)=j=1∏D(k=1∑nwkξk)(B-6.1)
其中 w k w_k wk和 ξ k \xi_k ξk是一维n次多项式高斯积分的权重和积分点。积分结果被转化为多个一维Gauss-Hermite积分的连乘。注意到(B-6.1)式等价于
1 ( 2 π ) D / 2 ∫ e x p ( − ξ ⋅ ξ 2 ) p ( ξ ) d ξ = ∑ k 1 = 1 n . . . ∑ k D = 1 n [ ( w k 1 w k 2 . . . w k D ) ( ξ k 1 n 1 ξ k 2 n 2 . . . ξ k D n D ) ] (B-6.2) \frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum\limits_{k_1=1}\limits^{n} ... \sum\limits_{k_D=1}\limits^{n} [(w_{k_1} w_{k_2} ... w_{k_D}) (\xi_{k_1}^{n_1} \xi_{k_2}^{n_2} ... \xi_{k_D}^{n_D})] \tag{B-6.2} (2π)D/21∫exp(−2ξ⋅ξ)p(ξ)dξ=k1=1∑n...kD=1∑n[(wk1wk2...wkD)(ξk1n1ξk2n2...ξkDnD)](B-6.2)
如果定义 ξ k 1 . . . k D = ( ξ k 1 , ξ k 2 , . . . , ξ k D ) \xi_{k_1 ... k_D} = (\xi_{k_1}, \xi_{k_2}, ... , \xi_{k_D}) ξk1...kD=(ξk1,ξk2,...,ξkD) 和 w k 1 . . . k D = w k 1 w k 2 . . . w k D w_{k_1 ... k_D} = w_{k_1} w_{k_2} ... w_{k_D} wk1...kD=wk1wk2...wkD ,那么(B-4)式等价为
1 ( 2 π ) D / 2 ∫ e x p ( − ξ ⋅ ξ 2 ) p ( ξ ) d ξ = ∑ w k 1 . . . k D p ( ξ k 1 . . . k D ) (B-7) \frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum w_{k_1 ... k_D} p(\xi_{k_1 ... k_D}) \tag{B-7} (2π)D/21∫exp(−2ξ⋅ξ)p(ξ)dξ=∑wk1...kDp(ξk1...kD)(B-7)
此时则将(B-4)式转换为与一维Gauss-Hermite积分类似的形式,即(B-7)式。
参考
GRAD H. Note on N-Dimensional Hermite Polynomials[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 325–330. http://doi.org/10.1002/cpa.3160020402 ↩︎
GRAD H. On the Kinetic Theory of Rarefied Gases[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 331–407. http://doi.org/10.1002/cpa.3160020403 ↩︎
SHAN X, YUAN X-F, CHEN H. Kinetic Theory Representation of Hydrodynamics: A Way beyond the Navier–Stokes Equation[J]. Journal of Fluid Mechanics, 2006, 550(1): 413. http://doi.org/10.1017/S0022112005008153 ↩︎ ↩︎
CAO W. Investigation of the Applicability of the Lattice Boltzmann Method to Free-Surface Hydrodynamic Problems in Marine Engineering[D/OL]. Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA): École centrale de Nantes, 2019. https://tel.archives-ouvertes.fr/tel-02383174 ↩︎