多元函数学

一、基本定义

1.邻域

U ( x 0 , δ ) = { x ∣ ρ ( x , x 0 ) ≤ δ , ∀ x ∈ P } U(x_0, \delta)=\{x|\hspace{0.05cm}\rho(x,x_0)\le\delta, \forall x\in P \} U(x0,δ)={xρ(x,x0)δ,xP}
书上另外给了概念:
ρ ( x , y ) = ∣ ∣ x − y ∣ ∣ = ( ∑ i = 1 n ( x i − y i ) 2 ) \rho (x,y)=||x-y||=\sqrt[]{(\sum_{i=1}^n(x_i-y_i)^2)} ρ(x,y)=xy=(i=1n(xiyi)2)
去心邻域略。

2.点

点和点集

类型内容
内点 ∃ U ( P ) ⊂ E \exists U(P)\subset E U(P)E
外点 ∃ U ( P ) ∩ E = ⊘ \exists U(P)\cap E=\oslash U(P)E=
边界点 p 0 ∈ U ( P 0 ) , ∃ p 0 ∈ E 同 时 ∃ p 0 ∉ E p_0\in U(P_0),\exists p_0\in E同时\exists p_0\notin E p0U(P0),p0Ep0/E
边界∂E,边界点的全体
聚点去心邻域内总有E中的点
[1]

边 界 点 可 能 属 于 E , 也 可 能 不 属 于 E 边界点可能属于E,也可能不属于E EE

[2]

聚 点 是 内 点 或 者 边 界 点 聚点是内点或者边界点

2.平面点集

类型内容
开集点集 E E E的点都是内点
闭集 ∂ E ⊂ E ∂E\subset E EE
连通集 E E E中的两个点都能用折现连起来,并且折线上的属于 E E E
区域(开区域)连通的开集
闭区域开区域和它的边界
有界集 ∃ r , 使 得 E ⊂ O ( 0 , r ) \exists r,使得 E\subset O(0,r) r,使EO(0,r)
无界集如果不是有界集

二、多元函数及其极限

1.多元函数定义

D是定义域,u是因变量, x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是自变量,
u = f ( P ) , P ( x 1 , x 2 , ⋯   , x n ) ∈ D u=f(P),P(x_1,x_2,\cdots,x_n)\in D u=f(P),P(x1,x2,,xn)D

2.二元函数的图形

{ ( x , y , x ) ∣ z = f ( x , y ) , ( x , y ) ∈ D } \{(x,y,x)|z=f(x,y),(x,y)\in D\} {(x,y,x)z=f(x,y),(x,y)D}

3.多元极限的定义

下面只给出二元的时候的一种定义( P → P 0 , F → A P\to P_0,F\to A PP0,FA)【叫做二重极限
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y) \to (x_0,y_0)}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A ρ ( x , y ) < δ 时 , ∣ f ( x , y ) − A ∣ < ϵ 成 立 ( ∃ δ , ∀ ϵ > 0 ) \rho(x,y)<\delta 时,|f(x,y)-A|<\epsilon 成立(\exists \delta,\forall\epsilon>0 ) ρ(x,y)<δf(x,y)A<ϵδϵ>0

对 于 ∀ ϵ > 0 , ∃ δ 对于\forall\epsilon>0,\exists \delta ϵ>0δ也就是是说,对于y的邻域,可以找到x的邻域。

二、多元函数的连续性

1.连续

定义域 D D D, D D D的聚点 P 0 ∈ D P_0\in D P0D。如果在 P 0 P_0 P0极限等于函数值,连续。

2.间断点

定义域 D D D, D D D的聚点 P 0 P_0 P0,如果在 P 0 P_0 P0极限不等于函数值,间断点。

3.性质

①有界性存在最大值和最小值
②介值定理能取到最大值最小值之间的数
③一致连续性定理在闭区间D上面一致连续

一致连续

对于区间 [ x 1 , x 2 ] ( X 1 , X 2 ∈ D ) [x_1,x_2](X_1,X_2\in D) [x1,x2](X1,X2D),当 对 于 ∀ ϵ > 0 , ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ ∃ δ ∣ x 1 − x 2 ∣ < < ϵ 对于\forall\epsilon>0,|f(x_1)-f(x_2)|<\epsilon \hspace{0.4cm}\exists \delta|x_1-x_2|<<\epsilon ϵ>0,f(x1)f(x2)<ϵδx1x2<<ϵ

4.连续性

连续性的法则和一元函数的连续性类似。参照此篇blog
连续性

四、偏导数

1.定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某一个邻域有定义则:
lim ⁡ △ x → 0 f ( x 0 + △ x , y + 0 ) − f ( x 0 , y 0 ) △ x \lim_{\bigtriangleup x \to 0} \frac{f(x_0+\bigtriangleup x,y+0)-f(x_0,y_0)}{\bigtriangleup x} x0limxf(x0+x,y+0)f(x0,y0)
被称为 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) x x x的偏导数

2.标记(以x偏导数为例)

f x ( x 0 , y 0 ) a n d z x ′ , f x ′ f_x(x_0,y_0)\hspace{0.2cm} and \hspace{0.2cm}z_x',f_x' fx(x0,y0)andzx,fx

ϑ z ϑ x ∣ x = x 0 , y = y 0 a n d ϑ f ϑ x ∣ x = x 0 , y = y 0 a n d z y ∣ x = x 0 , y = y 0 \frac{\vartheta z}{\vartheta x} \bigg|_{x=x_0,y=y_0}and \hspace{0.2cm}\frac{\vartheta f}{\vartheta x} \bigg|_{x=x_0,y=y_0}and\hspace{0.2cm} z_y\bigg|_{x=x_0,y=y_0} ϑxϑzx=x0,y=y0andϑxϑfx=x0,y=y0andzyx=x0,y=y0

3.几何意义

曲面 x 或 y x或y xy固定时曲线的切线斜率

4.高阶偏导

如果 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个n阶混合偏导数在 D D D内连续,那么有

f x , y ′ ′ ( x , y ) = f y , x ′ ′ ( x , y ) f''_{x,y}(x,y)=f''_{y,x}(x,y) fx,y(x,y)=fy,x(x,y)

可以推广到n维,二维的证明如下

设 φ ( x ) = f ( x , y + △ y ) − f ( x , y ) , φ ′ ( x ) = f ′ ( x , y + △ y ) − f ′ ( x , y ) , 另 外 A = φ ( x + △ x ) − φ ( x ) 。 在 [ x , x + △ x ] 设\varphi(x)=f(x,y+\bigtriangleup y)-f(x,y),\varphi'(x)=f'(x,y+\bigtriangleup y)-f'(x,y),另外A=\varphi(x+\bigtriangleup x)-\varphi(x)。 在[x,x+\bigtriangleup x] φ(x)=f(x,y+y)f(x,y)φ(x)=f(x,y+y)f(x,y)A=φ(x+x)φ(x)[x,x+x]上应用拉格朗日中值定理,得 A = △ x φ ′ ( θ ) A=\bigtriangleup x\varphi'(\theta) A=xφ(θ),在 [ y , y + △ y ] [y,y+\bigtriangleup y] [y,y+y]上再次应用拉格朗日中值定理,得 A = △ x △ y f ′ ′ ( θ , θ 1 ) A=\bigtriangleup x\bigtriangleup yf''(\theta,\theta_1) A=xyf(θ,θ1)即: f ( x + △ x , y + △ y ) − f ( x + △ x , y ) − f ( x , y + △ y ) + f ( x , y ) = △ x △ y f ′ ′ ( θ , θ 1 ) f(x+\bigtriangleup x,y+\bigtriangleup y )-f(x+\bigtriangleup x,y)-f(x,y+\bigtriangleup y)+f(x,y)=\bigtriangleup x\bigtriangleup yf''(\theta,\theta_1) f(x+x,y+y)f(x+x,y)f(x,y+y)+f(x,y)=xyf(θ,θ1)同理可设 φ ( y ) = f ( x + △ x , y ) − f ( x , y ) \varphi(y)=f(x+\bigtriangleup x,y)-f(x,y) φ(y)=f(x+x,y)f(x,y), A = φ ( y + △ y ) − φ ( y ) A=\varphi(y+\bigtriangleup y)-\varphi(y) A=φ(y+y)φ(y)
f ( x + △ x , y + △ y ) − f ( x + △ x , y ) − f ( x , y + △ y ) + f ( x , y ) = △ x △ y f ′ ′ ( θ 3 , θ 4 ) f(x+\bigtriangleup x,y+\bigtriangleup y )-f(x+\bigtriangleup x,y)-f(x,y+\bigtriangleup y)+f(x,y)=\bigtriangleup x\bigtriangleup yf''(\theta_3,\theta_4) f(x+x,y+y)f(x+x,y)f(x,y+y)+f(x,y)=xyf(θ3,θ4)显然当 △ x → 0 , 和 △ y → 0 时 , ( θ , θ 1 ) = ( θ 3 , θ 4 ) \bigtriangleup x \to0,和\bigtriangleup y \to0时,(\theta,\theta_1)=(\theta_3,\theta_4) x0,y0(θ,θ1)=(θ3,θ4)(区间左右两端相比极限是1)。证毕

五、全微分

1.全微分的定义

d z = f ( x + △ x , y + △ y ) − f ( x , y ) = A △ x + B △ y + o ( ρ ) , ρ = △ x 2 + △ y 2 dz=f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y)=A\bigtriangleup x+B \bigtriangleup y+o(\rho),\hspace{1cm}\rho=\sqrt[]{\bigtriangleup x^2+\bigtriangleup y^2} dz=f(x+x,y+y)f(x,y)=Ax+By+o(ρ),ρ=x2+y2
同时有:
f ( x + △ x , y ) − f ( x , y ) = f x ( x , y ) △ x + o ( △ x ) f(x+\bigtriangleup x,y)-f(x,y)=f_x(x,y)\bigtriangleup x+o(\bigtriangleup x) f(x+x,y)f(x,y)=fx(x,y)x+o(x) f ( x , y + △ y ) − f ( x , y ) = f y ( x , y ) △ y + o ( △ y ) f(x,y+\bigtriangleup y)-f(x,y)=f_y(x,y)\bigtriangleup y+o(\bigtriangleup y) f(x,y+y)f(x,y)=fy(x,y)y+o(y)

[1]

只 有 z = f ( x , y ) 在 P 0 的 两 个 偏 导 数 都 存 在 , 并 且 都 连 续 。 它 在 P 0 点 才 有 全 微 分 只有z=f(x,y)在P_0的两个偏导数都存在,并且都连续。它在P_0点才有全微分 z=f(x,y)P0P0

证明如下:
△ z = f ( x + △ x , y + △ y ) − f ( x , y ) = f ( x + △ x , y + △ y ) − f ( x + △ x , y ) + f ( x + △ x , y ) − f ( x , y ) = △ y f y ( x + △ x , y + θ 1 △ y ) + △ x f x ( x + θ 2 △ x , y ) = △ y ( f y ( x , y ) + ε 1 ) + △ x ( f x ( x , y ) + ε 2 ) = △ y f y ( x , y ) + △ x f x ( x , y ) + o ( ρ ) b e c a u s e : ∣ ε 1 △ x + ε 2 △ y ρ ∣ = cos ⁡ θ ε 1 2 + ε 2 2 < ∣ ε 1 ∣ + ∣ ε 2 ∣ \begin{aligned} &\bigtriangleup z=f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y)\\ &\hspace{0.65cm}=f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x+\bigtriangleup x,y)+f(x+\bigtriangleup x,y)-f(x,y)\\ &\hspace{0.65cm}=\bigtriangleup yf_y(x+\bigtriangleup x,y+\theta_1 \bigtriangleup y)+\bigtriangleup xf_x(x+\theta_2 \bigtriangleup x,y) \\&\hspace{0.65cm}=\bigtriangleup y(f_y(x,y)+\varepsilon_1 )+\bigtriangleup x(f_x(x,y)+\varepsilon_2 )\\ &\hspace{0.65cm}=\bigtriangleup yf_y(x,y)+\bigtriangleup xf_x(x,y)+o(\rho )\\ &because:|\frac{\varepsilon_1\bigtriangleup x+\varepsilon_2\bigtriangleup y}{\rho } |=\cos \theta \sqrt[]{\varepsilon_1^2+\varepsilon_2^2 }<|\varepsilon_1|+|\varepsilon_2| \end{aligned} z=f(x+x,y+y)f(x,y)=f(x+x,y+y)f(x+x,y)+f(x+x,y)f(x,y)=yfy(x+x,y+θ1y)+xfx(x+θ2x,y)=y(fy(x,y)+ε1)+x(fx(x,y)+ε2)=yfy(x,y)+xfx(x,y)+o(ρ)because:ρε1x+ε2y=cosθε12+ε22 <ε1+ε2

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值