#! https://zhuanlan.zhihu.com/p/497974257
随机变量及其分布
一、随机变量
定义1
若变量 X 、 Y 和 Z X、Y和Z X、Y和Z都可以看成是定义在随机试验 E E E的样本空间为 S = e S = {e} S=e.上的单值实值函数 X = X ( e ) 、 Y = Y ( e ) 和 Z = Z ( e ) X= X(e)、Y= Y(e)和Z= Z(e) X=X(e)、Y=Y(e)和Z=Z(e),我们称其为随机变量.
二、离散型随机变量和其分布
1. 离散型随机变量
如果随机变量 X X X的所有可能取值是有限个或可列无限多个,则称 X X X为离散型随机变量
- 可列无限多个,比如某地铁站后天的售票数量 X X X,我市110报警中心明天一昼夜收到的呼唤次数 Z Z Z;
2. 分布律
设离散型随机变量X的所有可能的取值为 X k ( k = 1 , 2 , ⋯ ) X_k (k=1, 2,\cdots) Xk(k=1,2,⋯),并设 X X X取各个可能值的概率为 P { X = x k } = p k , k = 1 , 2 , ⋯ P{\left\{X=x_{k}\right\}}=p_{k}, \quad k=1,2, \cdots P{X=xk}=pk,k=1,2,⋯则称上式为离散型随机变量 X X X的分布律(也称概率分布),也可用如下表格表示。
3.常见的离散型随机变量的分布
分布 | 介绍 | 分布律 | 记号 |
---|---|---|---|
0 − 1 0-1 0−1分布 | X X X只可能取 01 01 01 | P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 , P\{X=k\}=p^{k}(1-p)^{1-k}, \quad k=0,1, P{X=k}=pk(1−p)1−k,k=0,1, | 称 X X X服从参数为 p p p的 ( 0 − 1 ) (0-1) (0−1) 分布,简记为随机变量 X ∼ b ( 1 , p ) X \sim b(1, p) X∼b(1,p) |
二项分布 | $X $表示 n n n 重伯努利试验中事件 A A A 发生的次数 | P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯ , n , P\{X=k\}=\mathrm{C}_{n}^{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \cdots, n, P{X=k}=Cnkpk(1−p)n−k,k=0,1,⋯,n, | 则称随机变量 X X X服从参数为 n , p n, p n,p的二项分布,记为 X ∼ b ( n , p ) X\sim b(n, p) X∼b(n,p) |
超几何分布 | N N N 件,其中 M M M件是次品,无放回抽取 n n n件产品进行检验以 X X X表示抽取的 n n n件产品中次品的件数。 | P { X = k } = C M k C N − M n − k C N n , k = m i n { n , M } , P\{X=k\}=\frac{\mathrm{C}_{M}^{k} \mathrm{C}_{N-M}^{n-k}}{\mathrm{C}_{N}^{n}}, \quad k=min \{n,M\}, P{X=k}=CNnCMkCN−Mn−k,k=min{n,M}, | 称随机变量X服从超几何分布 |
泊松分布 | X X X 的所有可能取值为 0 , 1 , 2 ⋯ 0,1,2\cdots 0,1,2⋯而取各个值的概率为 P { X = k } P\{X=k\} P{X=k} | P { X = k } = λ k k ! e − λ , ( k = 0 , 1 , 2 , ⋯ ; λ > 0 ) P\{X=k\}=\frac{\lambda^{k}}{k !} e^{-\lambda},(k=0,1,2, \cdots ; \lambda>0) P{X=k}=k!λke−λ,(k=0,1,2,⋯;λ>0) | 则称$ X$ 服从参数为 λ \lambda λ的泊松分布记为 X ∼ P ( λ ) X \sim P(\lambda) X∼P(λ)或 X ∼ π ( λ ) X \sim \pi(\lambda) X∼π(λ) |
伯努利试验
设随机试验 E E E只有两个可能的结果, A A A及 A ˉ \bar{A} Aˉ,并且 P ( A ) = p , P ( A ) = 1 − p = q P(A)= p, P(A)=1- p=q P(A)=p,P(A)=1−p=q, ( 0 < p < 1 ) (0< p<1) (0<p<1)将随机试验E独立地重复进行 n n n次,称这一-串重复的独立试验为 n n n重伯努利试验.
二项分布
∑ k = 0 n P { X = k } = ∑ k = 0 n C n k p k q n − k = ( p + q ) n = 1 \sum_{k=0}^{n} P\{X=k\}=\sum_{k=0}^{n} C_{n}^{k} p^{k} q^{n-k}=(p+q)^{n}=1 k=0∑nP{X=k}=k=0∑nCnkpkqn−k=(p+q)n=1
p k p k − 1 = C n k p k q n − k C n k − 1 p k − 1 q n − k + 1 = 1 + ( n + 1 ) p − k k ( 1 − p ) , \large{\frac{p_{k}}{p_{k-1}}=\frac{C_{n}^{k} p^{k} q^{n-k}}{C_{n}^{k-1} p^{k-1} q^{n-k+1}}=1+\frac{(n+1) p-k}{k(1-p)}}, pk−1pk=Cnk−1pk−1qn−k+1Cnkpkqn−k=1+k(1−p)(n+1)p−k,
S o 当 k < ( n + 1 ) p 时 p k 递 增 ; 当 k > ( n + 1 ) p 时 p k 递 减 . So 当 k<(n+1) p 时p_{k} 递增;当 k>(n+1) p 时p_{k} 递减. So当k<(n+1)p时pk递增;当k>(n+1)p时pk递减.
泊松分布,泊松定理
(2) ∑ k = 0 + ∞ P { X = k } = ∑ k = 0 + ∞ λ k e − λ k ! = e − λ ∑ k = 0 + ∞ λ k k ! = e − λ e λ = 1 . \text { (2) } \sum_{k=0}^{+\infty} P\{X=k\}=\sum_{k=0}^{+\infty} \frac{\lambda^{k} e^{-\lambda}}{k !}=e^{-\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{k}}{k !}=e^{-\lambda} e^{\lambda}=1 \text {. } (2) k=0∑+∞P{X=k}=k=0∑+∞k!λke−λ=e−λk=0∑+∞k!λk=e−λeλ=1.