【无标题】

#! https://zhuanlan.zhihu.com/p/497974257

随机变量及其分布

一、随机变量

定义1

若变量 X 、 Y 和 Z X、Y和Z XYZ都可以看成是定义在随机试验 E E E的样本空间为 S = e S = {e} S=e.上的单值实值函数 X = X ( e ) 、 Y = Y ( e ) 和 Z = Z ( e ) X= X(e)、Y= Y(e)和Z= Z(e) X=X(e)Y=Y(e)Z=Z(e),我们称其为随机变量.

二、离散型随机变量和其分布

1. 离散型随机变量

如果随机变量 X X X的所有可能取值是有限个可列无限多个,则称 X X X为离散型随机变量

  • 可列无限多个,比如某地铁站后天的售票数量 X X X,我市110报警中心明天一昼夜收到的呼唤次数 Z Z Z;

2. 分布律

设离散型随机变量X的所有可能的取值为 X k ( k = 1 , 2 , ⋯   ) X_k (k=1, 2,\cdots) Xk(k=1,2,),并设 X X X取各个可能值的概率为 P { X = x k } = p k , k = 1 , 2 , ⋯ P{\left\{X=x_{k}\right\}}=p_{k}, \quad k=1,2, \cdots P{X=xk}=pk,k=1,2,则称上式为离散型随机变量 X X X的分布律(也称概率分布),也可用如下表格表示。

3.常见的离散型随机变量的分布

分布介绍分布律记号
0 − 1 0-1 01分布 X X X只可能取 01 01 01 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 , P\{X=k\}=p^{k}(1-p)^{1-k}, \quad k=0,1, P{X=k}=pk(1p)1k,k=0,1, X X X服从参数为 p p p ( 0 − 1 ) (0-1) (01) 分布,简记为随机变量 X ∼ b ( 1 , p ) X \sim b(1, p) Xb(1,p)
二项分布$X $表示 n n n 重伯努利试验中事件 A A A 发生的次数 P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n , P\{X=k\}=\mathrm{C}_{n}^{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \cdots, n, P{X=k}=Cnkpk(1p)nk,k=0,1,,n,则称随机变量 X X X服从参数为 n , p n, p n,p的二项分布,记为 X ∼ b ( n , p ) X\sim b(n, p) Xb(n,p)
超几何分布 N N N 件,其中 M M M件是次品,无放回抽取 n n n件产品进行检验以 X X X表示抽取的 n n n件产品中次品的件数。 P { X = k } = C M k C N − M n − k C N n , k = m i n { n , M } , P\{X=k\}=\frac{\mathrm{C}_{M}^{k} \mathrm{C}_{N-M}^{n-k}}{\mathrm{C}_{N}^{n}}, \quad k=min \{n,M\}, P{X=k}=CNnCMkCNMnk,k=min{n,M},称随机变量X服从超几何分布
泊松分布 X X X 的所有可能取值为 0 , 1 , 2 ⋯ 0,1,2\cdots 0,1,2而取各个值的概率为 P { X = k } P\{X=k\} P{X=k} P { X = k } = λ k k ! e − λ , ( k = 0 , 1 , 2 , ⋯   ; λ > 0 ) P\{X=k\}=\frac{\lambda^{k}}{k !} e^{-\lambda},(k=0,1,2, \cdots ; \lambda>0) P{X=k}=k!λkeλ,(k=0,1,2,;λ>0)则称$ X$ 服从参数为 λ \lambda λ的泊松分布记为 X ∼ P ( λ ) X \sim P(\lambda) XP(λ) X ∼ π ( λ ) X \sim \pi(\lambda) Xπ(λ)
伯努利试验

设随机试验 E E E只有两个可能的结果, A A A A ˉ \bar{A} Aˉ,并且 P ( A ) = p , P ( A ) = 1 − p = q P(A)= p, P(A)=1- p=q P(A)=p,P(A)=1p=q, ( 0 < p < 1 ) (0< p<1) (0<p<1)将随机试验E独立地重复进行 n n n次,称这一-串重复的独立试验为 n n n伯努利试验.

二项分布

∑ k = 0 n P { X = k } = ∑ k = 0 n C n k p k q n − k = ( p + q ) n = 1 \sum_{k=0}^{n} P\{X=k\}=\sum_{k=0}^{n} C_{n}^{k} p^{k} q^{n-k}=(p+q)^{n}=1 k=0nP{X=k}=k=0nCnkpkqnk=(p+q)n=1

p k p k − 1 = C n k p k q n − k C n k − 1 p k − 1 q n − k + 1 = 1 + ( n + 1 ) p − k k ( 1 − p ) , \large{\frac{p_{k}}{p_{k-1}}=\frac{C_{n}^{k} p^{k} q^{n-k}}{C_{n}^{k-1} p^{k-1} q^{n-k+1}}=1+\frac{(n+1) p-k}{k(1-p)}}, pk1pk=Cnk1pk1qnk+1Cnkpkqnk=1+k(1p)(n+1)pk,

S o 当 k < ( n + 1 ) p 时 p k 递 增 ; 当 k > ( n + 1 ) p 时 p k 递 减 . So 当 k<(n+1) p 时p_{k} 递增;当 k>(n+1) p 时p_{k} 递减. Sok<(n+1)ppkk>(n+1)ppk.

泊松分布,泊松定理

 (2)  ∑ k = 0 + ∞ P { X = k } = ∑ k = 0 + ∞ λ k e − λ k ! = e − λ ∑ k = 0 + ∞ λ k k ! = e − λ e λ = 1 .  \text { (2) } \sum_{k=0}^{+\infty} P\{X=k\}=\sum_{k=0}^{+\infty} \frac{\lambda^{k} e^{-\lambda}}{k !}=e^{-\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{k}}{k !}=e^{-\lambda} e^{\lambda}=1 \text {. }  (2) k=0+P{X=k}=k=0+k!λkeλ=eλk=0+k!λk=eλeλ=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值