矩阵求A的1到n的幂次之和

题目大意

给你一个n*n(n <= 30)的矩阵A, 每个元素x(0 <=x<= 1e6 ), 给你一个m(m <= 1e9), 求S = A + A^2 + A ^3 + … + A^m,其中对每个元素对1e9+7取余。

分析

这里有另一种做法, 点此

 

对于A矩阵, 我们可以构造一个这样的矩阵B

\left[\begin{matrix} A & A \\ 0 & E \end{matrix} \right]

其n次方为

\left[\begin{matrix} A^n & A + A^2+A^3+...+A^n \\ 0 & E \end{matrix} \right]

  

因此只要求B^m 即可。

代码

 
#include <bits/stdc++.h>
using namespace std;

#define ms(a, b) memset((a), (b), sizeof(a))
typedef long long ll;
const int mod = 1e9 + 7;

inline ll read() {
    ll res = 0;bool f = 0;char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = 1;ch = getchar();}
    while (ch <= '9' && ch >= '0') {res = (res << 3) + (res << 1) + ch - '0';ch = getchar();}
    return f ? (~res + 1) : res;
}

struct matrix {
    int dimx, dimy; // 矩阵维度
    ll m[100][100];
    matrix(int x = 60, int y = 60) { // 构造函数
        ms(m, 0);
        dimx = x, dimy = y;
    }
    matrix operator*(const matrix &x) const {
        matrix c;
        for (int i = 0; i < dimx; ++i)
            for (int j = 0; j < x.dimy; ++j)
                for (int k = 0; k < dimy; ++k)
                    c.m[i][j] = (c.m[i][j] + m[i][k] * x.m[k][j]) % mod;
        return c;
    }
};

matrix qpow2(matrix a, int b) {
    matrix ans = a;b--;
    while (b) {
        if (b & 1) ans = ans * a;
        a = a * a;
        b >>= 1;
    }
    return ans;
}
int main(){
    int n = read(), m = read();
    matrix a(2 * n, 2 * n);
    for (int i = 0; i < n; ++i){
        for (int j = 0; j < n; ++j){
            a.m[i][j + n] = a.m[i][j] = read();
        }
    }
    for (int i = n; i < 2 * n; ++i) a.m[i][i] = 1;
    a = qpow2(a, m);
    for (int i = 0; i < n; ++i){
        for (int j = n; j < 2 * n; ++j){
            printf("%d", a.m[i][j]);
            if (j != 2 * n - 1) putchar(' ');
            else putchar(10);
        }
    }
    
    return 0;
}
恰似你一低头的温柔,较弱水莲花不胜寒风的娇羞, 我的心为你悸动不休。  --mingfuyan

千万不要图快——如果没有足够的时间用来实践, 那么学得快, 忘得也快。
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值