数值积分与微分
代数精度
基本定义,只要满足
∫ a b X m + 1 d x ≠ ∑ k = 0 n A k X k m + 1 \int_a^bX^{m+1}dx\neq\sum_{k=0}^nA_kX_k^{m+1} ∫abXm+1dx=k=0∑nAkXkm+1
在m次以内都是相等的那么就称求积公式具有m次的代数精度
注:代数精度与特殊函数没有关系,只和选取的点以及这些点的权值有关
插值型求积公式
插值型求积函数其权系数 A i = ∫ a b l i d x A_i=\int_{a}^{b}l_idx Ai=∫ablidx
插值型求积公式就是利用拉个朗日或者牛顿插值多项式构造插值函数,而且我们知道拉格朗日和牛顿插值多项的余项可以表示为
R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x) \\[10pt]\omega_{n+1}(x)=(x-x_0)(x-x_1)...(x-x_n) Rn(x)=(n+1)!fn+1(ξ)ωn+1(x)ωn+1(x)=(x−x0)(x−x1)...(x−xn)
有这个表达式可以推出,插值型求积公式的余项:
R [ f ] = ∫ a b f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) d x R[f]=\int_a^b\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x)dx R[f]=∫ab(n+1)!fn+1(ξ)ωn+1(x)dx
对于 f ( x ) f(x) f(x)我们很容易得出当 f ( x ) f(x) f(x)的次数等于n的时候我们经过n+1次求导积分内的表达式为0,故插值型求积公式至少具有n次代数精度
=>定理: I n = ∑ k = 0 n A k f ( x k ) I_n=\sum_{k=0}^{n}A_{k}f(x_k) In=∑k=0nAkf(xk)至少具有n次代数精度的充要条件是他是插值型的
求积公式的稳定性与收敛性
收敛性
基本定义随着步数增多,误差缩小,机械求积的值逐渐趋向于原本函数的值,那么这个求积公式就可以称之为收敛的
lim h → 0 ∑ k = 0 n A k f ( x k ) = ∫ a b f ( x ) d x \lim_{h\to0}\sum_{k=0}^nA_kf(x_k)=\int_a^bf(x)dx h→0limk=0∑nAkf(xk)=∫abf(x)dx
其中
h = max 1 ≤ i ≤ n ( x i − x i − 1 ) h=\max_{1\leq{i}\leq{n}}(x_i-x_{i-1}) h=1≤i≤nmax(xi−xi−1)
注:可以对比插值多项式,对于多个点的插值,当点过多的时候可能会产生龙格现象,误差随着插值点增加逐渐增加。但使用分段插值的时候可以避免误差的累积和龙格现象的产生。
稳定性
定义
∀ ϵ , ∃ δ 对 ∀ x K , 使 得 f ( x k ) − f k ∣ < δ 时 有 ∣ ∑ k = 0 n A k f ( x k ) − ∑ k = 0 n A k f k ∣ < ϵ \forall\epsilon,\exists\delta对\forall{x_K},使得f(x_k)-f_k|<\delta时有|\sum_{k=0}^{n}A_kf(x_k)-\sum_{k=0}^{n}A_kf_k|\lt\epsilon ∀ϵ,∃δ对∀xK,使得f(xk)−fk∣<δ时有∣k=0∑nAkf(xk)−k=0∑nAkfk∣<ϵ
则称这个机械求积是稳定的
=>当 A k > 0 A_k>0 Ak>0对任意k都成立的时候求积一定是稳定的,简单推理即可
牛顿-柯斯特公式
把积分区间等分成n个小区间,求的每个点的 f ( x ) f(x) f(x)的值,利用拉格朗日插值公式求的插值函数,再对插值函数求积分
L n ( x ) = ∑ k = 0 n f ( x k ) l k ( x ) 余 项 : R n ( x ) = f ( n + 1 ) ( x ) ( n + 1 ) ! ω n + 1 ( x ) 故 可 以 推 出 , 牛 顿 − 柯 斯 特 的 基 本 形 式 : I n = ∑ k = 0 n f ( x ) ∫ a b l k ( x ) d x 误 差 项 : R ( I n ) = ∫ a b R n ( x ) d x L_n(x)=\sum_{k=0}^{n}f(x_k)l_k(x) \\[10pt] 余项:R_n(x)=\frac{f^{(n+1)}(x)}{(n+1)!}\omega_{n+1}(x) \\[10pt] 故可以推出,牛顿-柯斯特的基本形式:\\[10pt]I_n=\sum_{k=0}^{n}f(x)\int_{a}^{b}l_k(x)dx \\[10pt]误差项:R(I_n)=\int_{a}^{b}R_n(x)dx Ln(x)=k=0∑nf(xk)lk(x)余项:Rn(x)=(n+1)!f(n+1)(x)ωn+1(x)故可以推出,牛顿−柯斯特的基本形式:In=k=0∑nf(x)∫ablk(x)dx误差项:R(In)=∫abRn(x)dx
由于牛顿-柯斯特公式是等距节点, x k , x h x_k,x_h xk,xh可以进行替换
最终形式:
I n ( f ) = ∑ k = 0 n A k f ( x k ) = ( b − a ) ∑ k = 0 n C k ( n ) f ( x k ) C k n = ( − 1 ) n − k n ∗ k ! ∗ ( n − k ) ! ∫ 0 n ∏ 0 ≤ j ≤ n , j ≠ k ( t − j ) d t I_n(f)=\sum_{k=0}{n}A_kf(x_k)=(b-a)\sum_{k=0}^nC_k^{(n)}f(x_k) \\[10pt]C_k^{n}=\frac{(-1)^{n-k}}{n*k!*(n-k)!}\int_0^n\prod_{0\leq{j}\leq{n},j\neq{k}}(t-j)dt In(f)=k=0∑nAkf(xk)=(b−a)k=0∑nCk(n)f(xk)Ckn=n∗k!∗(n−k)!(−1)n−k∫0n0≤j≤n,j=k∏(t−j)dt
=> 牛顿-柯斯特公式至少具有n+1次代数精度
低阶牛顿-柯斯特公式,及其余项
低阶牛顿-柯斯特公式就是把n取低阶的时候得到的公式,牛顿-柯斯特公式在原有的插值求积的基础上增加了,等分区间这一条件
再复习一遍,牛顿-柯斯特公式的求积公式的系数
C k ( n ) = ( − 1 ) ( n − k ) n ∗ k ! ∗ ( n − k ) ! ∫ 0 n ∏ 0 ≤ j ≤ n , j ≠ k ( t − j ) d t C_k^{(n)}=\frac{(-1)^{(n-k)}}{n*k!*(n-k)!}\int_0^n\prod_{0\leq{j}\leq{n},j\neq{k}}(t-j)dt Ck(n)=n∗k!∗(n−k)!(−1)(n−k)∫0n0≤j≤n,j=k∏(t−j)dt
梯形公式 n=1
n = 1 , C 0 = 1 2 , C 1 = 1 2 I n = ( b − a ) ( 1 2 f ( a ) + 1 2 f ( x b ) ) R ( I n ) = ∫ a b f ′ ′ ( x ) 2 ( x − a ) ( x − b ) d x = − 1 12 ( b − a ) 3 f ′ ′ ( x ) n=1 , C_0=\frac{1}{2}, C_1=\frac{1}{2} \\[10pt] I_n=(b-a)(\frac{1}{2}f(a)+\frac{1}{2}f(x_b)) \\[10pt]R(I_n)=\int_a^b\frac{f^{''}(x)}{2}(x-a)(x-b)dx=-\frac{1}{12}(b-a)^3f^{''}(x) n=1,C0=21,C1=21In=(b−a)(21f(a)+21f(xb))R(In)=∫ab2f′′(x)(x−a)(x−b)dx=−121(b−a)3f′′(x)
可以看出梯形公式具有一次代数精度
Simpson公式(三点公式) n=2
n = 3 , C 0 ( 2 ) = 1 6 , C 1 ( 2 ) = 1 4 , C 2 ( 2 ) = 1 6 I n = ( b − a ) ( 1 6 f ( a ) + 4 6 f ( a + b 2 ) + 1 6 f ( b ) ) R ( I n ) = − b − a 180 ( b − a 2 ) 4 f ( 4 ) ( η ) n=3,C_0^{(2)}=\frac{1}{6},C_1^{(2)}=\frac{1}{4},C_2^{(2)}=\frac{1}{6} \\[10pt]I_n=(b-a)(\frac{1}{6}f(a)+\frac{4}{6}f(\frac{a+b}{2})+\frac{1}{6}{f(b)}) \\[10pt]R(I_n)=-\frac{b-a}{180}(\frac{b-a}{2})^4f^{(4)}(\eta) n=3,C0(2)=61,C1(2)=41,C2(2)=61In=(b−a)(61f(a)+64f(2a+b)+61f(b))R(In)=−180b−a(2b−a)4f(4)(η)
Simpson三点公式具有三次代数精度
柯斯特求积公式及其余项 n=4
n = 4 , C 0 ( 4 ) = 7 90 , C 1 ( 4 ) = 32 90 , C 2 ( 4 ) = 12 90 , C 3 ( 4 ) = 32 90 , C 4 ( 4 ) = 7 90 I 4 = b − a 90 [ 7 f ( x 0 ) + 12 f ( x 1 ) + 32 f ( x 2 ) + 12 f ( x 3 ) + 7 f ( x 4 ) ] R ( I n ) = − 2 ( b − a ) 945 ( b − a 4 ) 6 f ( 6 ) ( η ) n=4,C_0^{(4)}=\frac{7}{90},C_1^{(4)}=\frac{32}{90},C_2^{(4)}=\frac{12}{90},C_3^{(4)}=\frac{32}{90},C_4^{(4)}=\frac{7}{90} \\[10pt]I_4=\frac{b-a}{90}[7f(x_0)+12f(x_1)+32f(x_2)+12f(x_3)+7f(x_4)] \\[10pt]R(I_n)=-\frac{2(b-a)}{945}(\frac{b-a}{4})^6f^{(6)}(\eta) n=4,C0(4)=907,C