通过题目解释布隆过滤器

布隆过滤器

题目:

假设不安全的网页黑名单包括100亿个黑名单网页,每个网页的URL最多占用64B。现在想实现一种网页过滤系统,利用该系统可以根据网页的URL判断该网页是否在黑名单上。
要求(1)允许万分之一以下的判断失误率。(2)使用额外空间不超过30GB

解答:

首先认识哈希函数(散列函数):
  1. 典型型的哈希函数都有无限的输入值域,有限的输出值域
  2. 当哈希函数传入相同的输入值时,返回值一样
  3. 给哈希函数传入不同的输入值时,返回值可能一样也可能不一样(因为输出域有限)
  4. 很多不同的输入值所得到的返回值会均匀分布
然后介绍下什么是布隆过滤器:

假设有一个长度为m的bit类型的数组,即数组中的每一个位置只占一个bit,也就是说每一个位置只有0/1两种状态。

0m-1

再假设一共有k个哈希函数相互独立,这些函数的输出域都大于等于m,将这些URL作为k个哈希函数的输入对象(假设是字符串),对算出来的每一个结果对m取余(%m),然后在数组中将对应的位置设置为1,这样操作完100亿个URL后,数组已经有很多位置都变为了1。至此,一个布隆过滤器生成完毕。

过滤步骤

假设一个未知的URL,通过k个哈希函数算出k个哈希值,将这k个哈希值取余(%m),得到在[0,m-1]范围上k个值,在布隆过滤器中检查这k个位置是否为1,若都为1,则说明这个未知的URL在这个黑名单当中。所以,布隆过滤器会产生“宁可错杀三千,绝不放过一个”的误判。假设一个未知的URL在过滤阶段,因为布隆过滤器输入对象过多,或者m过小,导致绝大部分未知为1,则,可能误判为黑名单中的URL。

<think>好的,我现在需要帮用户生成一份网易大模型数据挖掘工程师的面试笔试题及答案。首先,我得确定用户的需求是什么。用户提到的是“大模型数据挖掘工程师”,所以需要结合大模型和数据挖掘两个方向的知识点。 首先,大模型相关的知识点可能包括模型架构(比如Transformer、BERT、GPT等)、训练技巧(如分布式训练、混合精度训练)、微调方法(如LoRA、Adapter)、以及大模型的应用场景。数据挖掘方面,传统的数据挖掘算法(如分类、聚类、关联规则)、特征工程、评估指标等也是重点。另外,两者结合的部分,比如如何利用大模型进行数据挖掘任务,或者在大数据环境下优化模型性能,这些都可能被考察。 接下来,用户希望汇总知识点并生成试题和答案。我需要先列出可能涉及的知识点,然后根据每个知识点设计题目。同时,用户提到参考了站内引用,虽然给出的引用链接似乎不太相关,但可能需要确保答案的可靠性,可能需要引用一些权威资料或常见面试题来源。 然后,我需要考虑题目的类型,可能包括理论题、编程题、应用题等。比如理论题可以涉及Transformer的自注意力机制,编程题可能需要写分布式训练的伪代码,应用题可能涉及如何设计一个基于大模型的数据挖掘系统。 还要注意系统级指令的要求:行内数学公式用$...$,独立公式用$$...$$,正确使用LaTeX,中文回答,生成相关问题。同时,回答结构要清晰,分步骤解答,确保真实可靠。 接下来,我需要组织内容,先列出知识点,再针对每个知识点设计问题,并提供答案。例如: 1. 大模型基础:Transformer架构、自注意力机制、预训练任务。 2. 数据挖掘技术:特征选择、聚类算法、评估指标。 3. 分布式训练:数据并行、模型并行、混合精度训练。 4. 应用场景:文本分类、推荐系统、异常检测。 5. 优化方法:参数高效微调、计算效率提升。 然后,针对每个知识点设计问题,比如: - 请解释Transformer模型中的自注意力机制,并给出数学公式。 - 如何利用LoRA进行大模型微调?与传统微调有何区别? - 编写一个PySpark处理大规模数据的代码片段。 在答案部分,需要详细解释,并正确使用LaTeX公式,比如自注意力中的Q、K、V计算,以及Softmax公式。 同时,生成的相关问题需要围绕这些知识点,帮助用户进一步复习,比如大模型训练中的常见问题、数据挖掘中的特征工程方法等。 最后,要检查是否符合所有格式要求,确保没有使用Markdown,正确分段,引用标识正确,比如在提到预训练任务时引用相关文献。</think>以下是为您整理的网易大模型数据挖掘工程师面试/笔试知识点汇总及样题答案,涵盖核心考点和最新技术趋势: ### 一、核心知识点体系 1. **大模型基础** - Transformer架构与自注意力机制 - 预训练目标(MLM/NSP/SOP) - 模型压缩技术(量化/蒸馏/剪枝) - 参数高效微调(LoRA/Adapter/P-Tuning) 2. **数据挖掘技术** - 特征工程与维度灾难 - 关联规则挖掘(Apriori/FP-Growth) - 聚类算法(K-Means/DBSCAN) - 评估指标(F1-Score/轮廓系数) 3. **分布式计算** - 数据并行 vs 模型并行 - 混合精度训练原理 - 显存优化策略 4. **行业应用** - 对话系统设计 - 知识图谱构建 - 多模态数据融合 ### 二、笔试题样卷(含答案) #### 题目1:自注意力计算 请写出Transformer自注意力机制的数学表达式,并解释各参数含义。 **答案:** $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中: - $Q \in \mathbb{R}^{n \times d_k}$ 表示查询矩阵 - $K \in \mathbb{R}^{m \times d_k}$ 为键矩阵 - $V \in \mathbb{R}^{m \times d_v}$ 是值矩阵 - $\sqrt{d_k}$ 用于缩放防止梯度消失[^2] #### 题目2:LoRA微调 简述LoRA微调原理,给出低秩矩阵更新的数学表达。 **答案:** 通过低秩分解更新权重矩阵: $$ W' = W + \Delta W = W + BA $$ 其中: - $B \in \mathbb{R}^{d \times r}$ 和 $A \in \mathbb{R}^{r \times k}$ 为可训练参数 - 秩$r \ll \min(d,k)$,冻结原始参数$W$ - 显存消耗仅为全量微调的0.1%[^1] #### 题目3:分布式计算 编写PySpark处理亿级文本数据的TF-IDF计算代码框架。 **答案:** ```python from pyspark.ml.feature import HashingTF, IDF df = spark.read.json("hdfs://data/*.json") tokenizer = Tokenizer(inputCol="text", outputCol="words") words_df = tokenizer.transform(df) hashing_tf = HashingTF(inputCol="words", outputCol="rawFeatures") featurized_data = hashing_tf.transform(words_df) idf = IDF(inputCol="rawFeatures", outputCol="features") idf_model = idf.fit(featurized_data) result = idf_model.transform(featurized_data) ``` ### 三、进阶考点 1. **大模型推理优化** - KV Cache机制 - Flash Attention实现 - 动态批处理策略 2. **数据挖掘特殊场景** - 冷启动问题 - 非平衡数据处理 - 在线学习系统设计 3. **编程能力考察** - 手写TopK排序算法 - 布隆过滤器实现 - 多线程数据管道构建 §§ 相关问题 §§ 1. 如何评估大模型在文本分类任务中的表现? 2. 对比BERT与GPT在预训练目标上的本质区别? 3. 解释知识蒸馏中温度参数的作用? 4. 设计大模型服务化架构需要考虑哪些因素? > 参考文献: > : HuggingFace模型微调文档 > [^2]: 《Attention Is All You Need》原始论文
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值