HDU-6609 Find the answer【2019 Multi-University Training Contest 3】【权值线段树】

HDU-6609

Find the answer

Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2428 Accepted Submission(s): 829

Problem Description

Given a sequence of n integers called W and an integer m. For each i (1 <= i <= n), you can choose some elements Wk (1 <= k < i), and change them to zero to make ∑ij=1Wj<=m. So what’s the minimum number of chosen elements to meet the requirements above?.

Input

The first line contains an integer Q — the number of test cases.
For each test case:
The first line contains two integers n and m — n represents the number of elemens in sequence W and m is as described above.
The second line contains n integers, which means the sequence W.

1 <= Q <= 15
1 <= n <= 2*105
1 <= m <= 109
For each i, 1 <= Wi <= m

Output

For each test case, you should output n integers in one line: i-th integer means the minimum number of chosen elements Wk (1 <= k < i), and change them to zero to make ∑ij=1Wj<=m.

Sample Input

2
7 15
1 2 3 4 5 6 7
5 100
80 40 40 40 60

Sample Output

0 0 0 0 0 2 3
0 1 1 2 3

题意

给出一个 n 个数组和一个数 m,对于每个数 a[i] 求前 i - 1 个最少要去掉几个数时剩下的数加上 a[i] 的和小于等于 m。

思路

要使去掉的数最少,肯定要去掉最大的几个数,但我们每次去找最前几个大的数必然会 T,这题反过来想,就是前 i - 1 个数要凑出 m - a[i],尽可能的多,所以就去取最小的几个数。这题可以用权值线段树来做。因为 n 为 2 * 1e5,数是 1e9,所以先离线化,每个节点维护一个值域的数的总和,和数的个数。查询的时候因为左子树的数比较小,所以在左子数的大于等于足够查询 val 值时就直接递归查询左子树;当左子树的总和不够时就取左子树的全部,再去递归查询右子树(用 val - tree[root<<1].val 去查询)。当 tree[root].l == tree[root].r 时说明该 val 只能用 b[tree[root].l] 这个数来凑,那么直接取 val / (b[tree[root].l]) 即这个数该取的数量。
另外每次要先查询,再把 a[i] 更新进线段树,防止后面的数影响前面。

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define maxn 200100
using namespace std;
typedef long long ll;

int a[maxn], b[maxn];

struct node{
	ll val;
	int num, l, r;
}tree[maxn * 4];

void build(int root, int l, int r){
	tree[root].l = l;
	tree[root].r = r;
	tree[root].val = 0;
	tree[root].num = 0;
	if(l == r) return;
	int mid = (l + r) >> 1;
	build(root<<1, l, mid);
	build(root<<1|1, mid+1, r);
}

void update(int root, int pos){
	if(tree[root].l == tree[root].r){
		tree[root].val += b[pos];
		tree[root].num++;
		return;
	}
	int mid = (tree[root].l + tree[root].r) >> 1;
	if(pos <= mid) update(root<<1, pos);
	else update(root<<1|1, pos);
	tree[root].val = tree[root<<1].val + tree[root<<1|1].val;
	tree[root].num = tree[root<<1].num + tree[root<<1|1].num;
}

int query(int root, int val){
	if(tree[root].val <= val) return tree[root].num;
	if(tree[root].l == tree[root].r) return val/(b[tree[root].l]);
	if(tree[root<<1].val >= val) return query(root<<1, val);
	else return tree[root<<1].num + query(root<<1|1, val - tree[root<<1].val);
}

int main(){
	int t, n, m;
	while(~scanf("%d", &t)){
		while(t--){
			scanf("%d%d", &n, &m);
			for(int i = 1; i <= n; i++){
				scanf("%d", &a[i]);
				b[i] = a[i];
			}
			sort(b + 1, b + 1 + n);
			build(1, 1, n);
			for(int i = 1; i <= n; i++){
				if(i == 1)
					printf("0 ");
				else
					printf("%d ",i - 1 - query(1, m - a[i]));
				int pos = lower_bound(b + 1, b + 1 + n, a[i]) - b;
				update(1, pos);
			}
			printf("\n");
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值