混淆矩阵、准确率、精确率、召回率、roc、auc

最近做图像分类项目,用paddlexGUI得到了一些评估指标,就去看了看,写一下笔记回顾一下。

其实就是从混淆矩阵推理出来的准确率等参数,这个逻辑思维很连贯。

1.混淆矩阵

对于我们简单的二分类模型来说,预测的结果与实际结果组合就能得到四种结果。

混淆矩阵
实际实际
10
预测1TPFP
预测0FNTN

        T or F 表明我们预测和实际结果是否一致,

        P or N 表示我们预测出来是正样本还是负样本

2.准确率(Accuary)

        表明预测准确的占所有样本的比例   =   \frac{TP+TN}{TP+FP+FN+TN}

但是对于不均衡的样本来说,准确率毫无意义。比如1:4的数据,将全部数据预测为数据量大的一类,那么准确率都有80%之高。

3.精确率(Precision)

        表明在预测结果为正样本中,真正是正样本的占比 = \frac{TP}{TP+FP}

4.召回率(Recall)

        表明在全部正样本中,能预测正确的样本数量占比 = \frac{TP}{TP+FN}

可以看到,precision和recall 定义很绕口  所以我这样记忆:recall召回,那就是将正样本放出去(那就是本身为正样本)预测后能够召回的正样本数量占比,那么precision就是预测为正中,真正是正的占比。

5.F1_score

        对于precision 和recall 我们有时候想着要兼顾他们,所以定义新指标F1_score

                                F1_score  =  \frac{2*precision*recall}{precision+recall}

         同时,对于网络中不同的阈值有不同的precision和recall,这块好像可以通过precision-recall图来推好的阈值。

6.ROC,AUC

        在介绍ROC之前需要引入两个概念

        真正率(TPR) = \frac{TP}{TP+FN}

        假正率(FPR) = \frac{FP}{FP+TN}

因为TPR和FPR都是从实际样本出发来得到的,所以不会受正负样本不均衡的影响。

ROC曲线就是TPR-FPR曲线图。也是根据不同阈值得到的TPR和FPR!!!

ROC曲线越陡表明模型越好。

        AUC其实就是roc曲线和x轴之间的面积。

        0.5-0.7:效果较低

        0.7-0.85:效果一般

        0.85-0.95:效果很好

        0.95-1:效果非常好

ps:可以想为啥auc一般从0.5开始。

 

 

 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值