深度学习--TensorFlow(5)BP神经网络(混淆矩阵、准确率、精确率、召回率、F值)

本文深入探讨了机器学习中的评估指标,包括混淆矩阵的构成及作用,准确率、召回率和精确率的定义和计算方式,并通过实例解释了它们在预测模型性能评估中的意义。此外,还介绍了综合评估指标F值,它是精确率和召回率的调和平均数,用于平衡两者在实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、混淆矩阵

 二、准确率

三、召回率

四、精确率

五、综合评估指标 -- F值


一、混淆矩阵

        也程 误差矩阵,是表示 精度评价的一种标准格式,用n行n列的矩阵形式来表示。 在机器学习领域,混淆矩阵又称为可能性表格或者是错误矩阵。它是一种特定的矩阵用来呈现算法的效果。

后面准确率、召回率、精确率、F值的讲解,都以该例子进行计算:

 二、准确率

准确率:识别成功的概率。

公式:

准确率比较好理解,难的是后面的召回率和精确率的理解

三、召回率

召回率:找到正例(恐怖分子)的概率。(召回率越高说明找到正例(恐怖分子)的能力越强

公式:

(TP:预测结果是positive,预测成功,原来是positive)

(FN:预测结果是negative,预测失败,原来是positive)

四、精确率

精确率:恐怖分子的判断能力。(精确率越高说明识别正例(恐怖分子)越精准

公式:

(TP:预测结果是positive,预测成功,原来是positive)

(FP:预测结果是positive,预测失败,原来是negative)

五、综合评估指标 -- F值

综合评估指标 -- F值:精确率(P)和召回率(R)的加权调和平均

公式:

\alpha=1时:

F1值计算:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_(*^▽^*)_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值