细粒度(Fine-Grained)通常指的是在计算机视觉和模式识别领域中,对图像进行更加细致的子类划分。这种分类不仅要求区分大类别(如鸟、狗、车等),还要进一步区分同一大类中的不同子类别(如麻雀、燕子等)。细粒度图像分类的难点在于,同一类别的不同子类之间往往仅在细微处存在差异,例如耳朵形状、毛色等,这使得分类任务变得非常困难。
在3D视觉和机器人应用中,细粒度也指从部分扫描的点云数据中估计物体的完整几何形状的问题。为了解决传统方法对形状细节预测不充分的局限性,研究者们引入了新的技术,如粗到细点完成网络(DCSE-PCN),这种网络使用局部细节补偿和形状结构增强模块进行有效的几何学习。在粗补阶段,网络通过特征学习和分层特征融合来恢复底层模型的整体形状和不完整点云的形状细节。在精细完成阶段,网络采用结构增强模块来加固粗修形状的相关形状结构,从而获得具有更细粒度细节的完整几何形状。
因此,细粒度的完整形状涉及到从部分数据中恢复物体的完整几何结构,并且能够捕捉到物体的细微特征,这对于3D视觉和机器人应用是非常重要的。