数据挖掘基本流程 CRISP-DM --项目实战总结 可操作性强

本文介绍了数据挖掘的基本流程,重点关注CRISP-DM方法,包括商业理解、数据理解、数据准备、建立模型、模型评估和结果部署。商业理解阶段涉及业务背景分析和目标设定;数据理解涉及数据字段解释、分布和质量;数据准备涵盖数据清洗、特征生成和筛选;建立模型阶段包括模型选择、评估和调优;模型评估则关注业务目标的达成;最后是结果部署和维护。文章还提及了数据挖掘过程中的循环优化及文件夹组织结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据挖掘的基本流程图

在实际的数据挖掘过程中,基本会经历一下的这些流程(主要参考CRISP-DM的流程,下文有详述。)。其中包含两个小循环和一个大循环。
数据挖掘流程

  • 第一个小循环是商业理解和数据理解之间的指标的反复构建和优化。
  • 第二个小循环是数据准备和建立模型,主要涉及到对数据的各种变换:清洗、特征筛选、特征生成、数据集成等。
  • 一个大循环是指,在结果部署之前,通过模型的评估,可能会回溯到商业理解的地方,对分析过程重新来过。

CRISP-DM

CRoss Industry Standard Process for Data Ming. 跨行业的基本数据挖掘流程。

下图是对数据挖掘各个阶段内应包含的内容做以简述。
数据挖掘各阶段理解

CRISP-DM的实现方法

商业理解

主要目的是了解业务背景、目标和痛点、制定合理的行动方案和可预期的成果。

STAR法则:状况、任务、行动、结果
OKR准则:通过定义目标O,设置关键成果KR.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值