Ensemble semi-supervised Fisher discriminant analysis model for fault classification见解

摘要

  • 在这篇文章中,半监督模型FDA的一种扩展形式的模型被提出,以应用在工业过程的故障分类中。这个方法使用K近邻(KNN)算法将集成模型中的子分类器得到的度量级输出合并,得到最终的分类结果。通过提出一种新的权重调整方法,进一步提出了一种自适应形式来提高分类性能。通过挖掘包含在未便签数据的额外信息,半监督学习可以生成一个更好的模型。与之对应,通过将一系列弱分类器结合起来,集成学习可以使算法鲁棒性获得很大的提升。此外,通过对不同的弱学习器合并不同的未标记数据,可以提高集成学习的多样性。因此,通过将这两种方法结合起来,可以使故障分类模型得到很大的提升。所提出的这两种算法的性能在TE平台上进行评估。

问题探究

  • 工业过程中的故障分类需要专家知识和先验知识对不同类型的故障样本进行分类,大量消耗时间。
  • 与正常状态的数据相比较,故障数据数量很少,使用不足够的标签故障样本进行故障分类模型搭建时,会造成过拟合。解决办法:半监督学习可以克服标签样本不充足的问题。常用的半监督学习方法有几种类型,如生成模型、低密度分离方法、基于图的方法和算法,它们将对所有数据的非监督步骤和仅使用标记数据的监督步骤结合起来。
  • 半监督学习的缺陷:半监督学习方法通常基于一些严格的数据伪特性,在不同数据集上性能差异较大,在有些情况下甚至比不过其监督学习形式的性能。而引入集成学习可以解决这一问题,集成学习训练一系列弱学习器,然后通过特定的规则将弱学习器结合起来,获得超过单一学习器的功能。

文章创新点

  • 在这篇文章中,一种结合集成学习与半监督学习的ESFDA(an ensemble semi-supervised form of Fisher discriminant analysis )被提出,用以解决工作过程中的故障分类问题。首先,ESFDA通过SFDA半监督学习训练子分类器,完成降维。在该训练阶段,它利用从标记数据中推断出的判别结构和从整个训练数据中推断出的全局结构,然后通过贝叶斯法则得到子分类器的输出—即样本的后验概率矩阵。然后使用KNN融合后验概率矩阵以得到最后的分类结果。
  • 此外,提出一种动态方式的ESFDA增强分类的性能,该方法可以动态调整样本权重和分类器权重,从而在训练过程的每次迭代中增强子分类器的多样性并进行模型优化。
    ESFDA算法框架
    图1 ESFDA算法框架

文章未看懂的地方(待写)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值