基于人工智能的滚动轴承PHM方法综述

本文全面回顾了基于人工智能的滚动轴承预测与健康管理(PHM)技术,重点关注浅层和深度学习算法。文章首先介绍了轴承的故障模式和健康指标,然后详细阐述了基于统计方法、神经网络和组合方法的浅层学习算法,包括LDA、SVM、KNN、ELM及其他统计算法的应用。接着,讨论了CNN、RNN和DNN等深度学习方法在REB PHM中的最新进展。研究表明,随着数据驱动方法的普及,人工智能技术在REB故障检测、诊断和预测方面展现出巨大潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文

A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM:shallow and deep learning

https://link.springer.com/article/10.1007/s42791-019-0016-y#Sec14

原文是一篇英文的综述,这篇博客和论文大意上一致,但内容上有所删减,表述上有修改。写这边博客的目的也是为了对该方向的研究有个大致的了解,以方便自己后来的学习。然后也期待和有相同研究的人一起交流。

摘要

本文的目的是对当前滚动轴承(REB)的故障检测、诊断以及预测的技术进行全面回顾。与基于模型的方法相反,数据驱动方法由于低成本传感器和大数据的可用性而越来越受欢迎。首先我们先回顾REB的预测与健康管理技术(PHM)的基本原理。然后给出不同轴承失效模式的简要描述,展示用于REB故障诊断和预测的不同健康特征(指标、标准)。本文旨在为研究人员提供一个整体平台,以选择和采用最适合其应用的方案。本文提供了当前REB PHM技术的概述,尤其关注人工智能技术在REB故障检测、诊断和预测中的应用。

简介

物联网(IoT),大数据分析和人工智能的迅速发展对PHM产生了深远影响。作为一门新兴学科,PHM通过保护工程资产免受潜在危险和突然故障的影响,确保工程系统的经济高效运行和管理。PHM还提高了工程资产的效率,可靠性和可用性。PHM的内容主要包括故障检测(故障是否存在),故障类型和位置的分析(诊断)以及未来的健康状况和剩余使用寿命预测(RUL)(预后)[1, 2, 3, 4, 5, 6, 7, 8, 9]。PHM还审查决策和反馈,以提供改进的基于状态的维护策略(CBM)。PHM的主要过程一般表示如图1所示。

PHM的主要过程
图1:PHM的主要过程

PHM是一个广泛的研究领域,本文重点回顾和总结旋转电机(REM) 的现代PHM技术。REM是大多数工程流程的核心,REM故障是工业故障的主要原因之一,其中REB故障占REM故障的45%-55%[10, 11],所以下文的讨论主要围绕REB的PHM技术展开。基于现有模型(物理/数学)的REB PHM研究存在许多困难,这是因为嘈杂和复杂的工作条件导致建模十分困难从而限制了其发展。此外现有的模型,尤其是基于物理的模型无法使用新测量到的数据实时更新,物理模型如图2(a)所示。与基于模型的方法不同,数据驱动方法越来越受欢迎,因为它们无需建模。此外传感器以及计算系统的发展使得我们能够容易地获取大量测量数据,如振动、温度、声吸收、声音测量、油污、激光唯一以及定子电流监测等。获取的信号包含故障信息和特征,对信号进行预处理,然后就可以提取不同的特征以更好地理解REB的健康状态。然而我们必须认识到,由于工业中实际恶劣的工作条件(高机械负载,机械冲击等),这些信号通常具有低信噪比和非平稳统计参数。这因素使得标准的基于数据驱动的REB PHM方法变得困难并限制了其有效性、性能和灵活性[5]。因此需要扩展或改进现有的标准的基于数据驱动的REB PHM方法,又或者完全开发其他方法,以上这些方法称为智能数据驱动方法。例如将传统机器(浅层学习)和目前火热的深度学习应用到PHM中,如图2(b)(c)所示。

三种模型对比图
图2:a 基于物理/数学模型的PHM技术,b 基于浅层学习的PHM技术,c 基于深度学习的PHM技术

再次说明,本文的目的是回顾和总结应用于REB故障检测、诊断和预测的最新智能PHM技术,为进一步研究相关主题提供参考。本文首先对浅层学习算法进行讨论和分类,然后再回顾最先进的基于深度学习的滚动轴承故障检测、诊断和预测技术。本文组织机构将以下顺序安排,第二章简要介绍不同的轴承失效模式及其原因,然后总结了不同的表示健康的特征(指标和标准)。第三章将详细介绍现有的REB PHM的浅层学习算法。第四章则说明了PHM的最新调查和研究成果,即基于深度学习 的REB故障检测、诊断和预测。最后,在第五章中给出总结。

2. REB PHM的基础知识

在工业中,许多机器的健康状况取决于REB的稳健性和可靠性。在操作期间获制造安装期间,REB都可能出现故障。因此导致故障发生的缺陷的检测、诊断和预测十分有必要。

2.1 轴承失效模式

裂缝,挤压,磨损,压痕等微小缺陷就会引起异常振动,噪音甚至设备的突然故障。不同的故障可能由多种因素引起,比如剥落,腐蚀,生锈,蠕动和歪斜等。根据ISO 15243[12],最常见的缺陷是疲劳,磨损,腐蚀,电腐蚀,塑性变形以及断裂和开裂,接下来将简要介绍每种缺陷的产生原因。

  • 疲劳开始是由于材料结构变化导致的轴承表面(滚子或滚道)上的微小裂缝,这是由接触区域中的重复应力引起的。
  • 由于密封不好或润滑不足,来自轴承内部污垢或异物导致了磨损
  • 电腐蚀是由于通过轴承的电流导致一个轴承部件(滚子或座圈)损坏(以凹坑的形式)。
  • 腐蚀主要是由于水或腐蚀剂存在于轴承内部从而导致密封件损坏,酸性润滑剂或工作温度的突然大幅度变化也会导致腐蚀的产生。
  • 塑性变形主要在轴承承受大负荷而导致滚道凹陷时产生的。
  • 断裂和开裂则是由冲击或循环应力引起的,另外高温也是其产生的因素之一。

2.2REB的健康指标

滚动原件轴承的PHM技术通常使用不同的传感器来收集几个原始物理信号(振动,定子电流,温度,转自速度等),通常是从这些原始信号的时频域中提取出数十个特征以用于检测、诊断和预测REB系统的健康状况。

Table1 Various features used in REB PHM techniques
No. Features Definition Physical meaning
Time domain features
1 Maximum I_{max} = max(x(k)) 动能相关
2 Minimum I_{min} = min(x(k)) 动能相关
3 Absolute maximum I_{amax}=max(\left | x(k) \right |) 动能相关
4 Sum I_{sum}=\sum_{k=1}^{N}x(k) 动能相关
5 Median I_{med}=median(x(k)) 动能相关
6 Most frequent value [13] I_{mod}=mode(x(k)) 动能相关
7 Mean I_{mean}=\frac{1}{N}\sum_{K=1}^{N}x(k) 动能相关
8 Absolute mean I_{amean}=\frac{1}{N}\sum_{k=1}^{N}\left | x(k) \right | 动能相关
9 Mean absolute deviation [13] I_{mad} = mad(x(k)) 动能相关
10 Harmonic mean(调和平均数) I_{har}=\frac{N}{\sum_{k=1}^{N}\frac{1}{x(k)}} 提供最真实的平均能量
11 Trapezoidal numerical integration(梯形数值积分)[13] I_{trap}=trapz(x(k)) None
12 Percentiles I_{prc}=prctile(x(k)) None
13 Interquartile rang(IQR) [13]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值