人工智能绪论
1.人工智能,机器学习,神经网络,深度学习之间关系
2.机器学习分类
机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised
Learning)和强化学习(Reinforcement Learning)
有监督学习 有监督学习的数据集包含了样本𝒙与样本的标签𝒚,算法模型需要学习到映射𝑓𝜃: 𝒙 → 𝒚,其中𝑓𝜃代表模型函数,𝜃为模型的参数。在训练时,通过计算模型的预测值𝑓𝜃(𝒙)与真实标签𝒚之间的误差来优化网络参数𝜃,使得网络下一次能够预测更精准。常见的有监督学习有线性回归,逻辑回归,支持向量机,随机森林等。
无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本𝒙的数据集,算法需要自行发现数据的模态,这种方式叫做无监督学习。无监督学习中有一类算法将自身作为监督信号,即模型需要学习的映射为𝑓𝜃: 𝒙 → 𝒙,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值𝑓𝜃(𝒙)与自身𝒙之间的误差来优化网络参数𝜃。常见的无监督学习算法有自编码器,生成对抗网络等。
强化学习 也称为增强学习,通过与环境进行交互来学习解决问题的策略的一类算法。与有监督、无监督学习不同,强化学习问题并没有明确的“正确的”动作监督信号,算法需要与环境进行交互,获取环境反馈的滞后的奖励信号,因此并不能通过计算动作与“正确动作”之间的误差来优化网络。常见的强化学习算法有DQN,PPO 等。
3.深度学习与其它算法比较