自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 Faster RCNN源码解析

更新中。。。

2023-12-01 11:31:54 361 1

原创 Faster RCNN

将2000✖4096维特征与20个SVM组成的权值矩阵4096✖20相乘,获得2000✖20的概率矩阵,每一行代表一个建议框归于每个目标类别的概率。对于非常深的网络,如VGG16,从VOCO7训练集上的5k图像上提取的特征需要数百GB的存储空间。利用Selecive Search算法通过图像分割的方法得到一些原始区域,然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体。2)将图像输入网络得到相应的特征图,将SS算法生成的候选框投影到特征图上获得相应的特征矩阵。

2023-11-30 20:05:16 904

原创 目标检测前言

1)通过专门模块去生成候选框(RPN),寻找前景以及调整边界框(基于anchors)2)基于之前生成的候选框进行进一步分类以及调整边界框(基于proposals)基于anchors直接进行分类以及调整边界框。例如Faster-RCNN。例如 SSD、YOLO。

2023-11-29 19:41:48 395 1

原创 目标检测中常见指标

Precision:TP/(TP+FP)模型预测的所有目标中,预测正确的比例 (查准率)Recall: TP/(TP+FN)所有真实目标中,模型预测正确的目标比例 (查全率)mAP: mean Average Precision, 即各类别AP的平均值。TP: IoU>0.5的检测框数量(同一Ground Truth只计算一次)FP: IoU<=0.5的检测框(或者是检测到同一个GT的多余检测框的数量)P-R曲线: Precision-Recall曲线。FN: 没有检测到GT的数量。

2023-11-29 19:26:56 417 1

原创 cifar10

【代码】cifar10。

2023-11-27 14:23:59 387

原创 初学遇到的知识点

在train模式,Dropout层会按照设定的参数p设置保留激活单元的概率,如keep_prob=0.8,Batch Normalization层会继续计算数据的mean和var并进行更新。model.eval()的作用是不启用 Batch Normalization 和 Dropout。在eval模式下,Dropout层会让所有的激活单元都通过,而Batch Normalization层会停止计算和更新mean和var,直接使用在训练阶段已经学出的mean和var值。

2023-11-20 20:46:46 35 1

原创 SVM-支持向量机

对偶理论是一种将一个优化问题转化为另一个优化问题的方法,其中两个问题都有相同的最优解。原始问题是我们想要解决的问题,而对偶问题是通过对原始问题进行一些数学变换得到的问题。也就是说可以将一个复杂的优化问题转化为一个更简单的问题,这有助于我们更好地理解和解决问题。将样本从原始空间映射到一个更高维的特征空间, 使样本在这个。我们使它向上平移和向下平移,触碰到样本的距离,间隔相等。现实中很难确定合适的核函数,使训练样本在特征空间中线。在样本空间中寻找一个超平面, 将不同类别的样本分开。高维特征空间使样本线性可分。

2023-11-13 15:21:55 44

原创 初学遇到的小问题

23年最新版pycharm找不到conda可执行文件解决办法-CSDN博客报错fp = builtins.open(filename, “rb“)解决_键盘奏鸣曲的博客-CSDN博客vscode CommandNotFoundError: Your shell has not been properly configured to use ‘conda activate‘.解决_理练于事_知行合一的博客-CSDN博客winPowerShell. : 无法加载文件 C:\Users\Administrator

2023-11-13 14:26:12 42

原创 SVM实现人脸识别

在jupyter遇到 UsageError: Line magic function `%%time` not found.时,要把%%time放在这个代码块的首行顶格。其中的C代表的是惩罚系数,用来防止过拟合,我们先用默认的初始值测试下性能。由于原来的数据很大,而且数据量多,我们首先对原始数据进行PCA降维。导入sklearn中的人脸数据,需要越过那堵墙,否则会报错。然后我们随机加载50张图片,并可视化查看预测结果。预测错误占比:5/50,大大提升了准确率。预测错误占比:16/50。

2023-11-03 20:50:31 525

原创 Pytorch-卷积神经网络(基础篇)

【代码】Pytorch-卷积神经网络(基础篇)

2023-11-02 16:14:11 52 1

原创 Pytorch-多分类问题

在Mnist数据集中,我们要得到的输出是0-9,共有十类,这种情况下我们希望输出0-9的概率都大于0,且和为1。神经网络希望输出之间是带有竞争性的,即所有概率之和为1,且所有概率均大于0,softmax可以实现这两点。

2023-11-02 16:04:43 52 1

原创 K-means聚类算法实现鸢尾花聚类

聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。K-means算法是典型的基于距离(欧式距离、曼哈顿距离)的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。,x_n)和y= (y_1,y_2,…

2023-11-01 21:36:33 4187 2

原创 泰坦尼克号幸存者预测

发现Age(年龄)、Fare(票价)、Cabin(船舱号)、Embarked(上船地点)存在缺失,需要进行补充。对于登船港口(Embarked),分别计算出各个类别的数量,采用最常见的类别进行填充。对于船舱号(Cabin),由于缺失的数据太多,将缺失的数据用’U’代替,表示未知.通过corr()进行特征选取,构造相关矩阵研究变量之间的相关关系,然后再提取特征,对矩阵中 Survived 那一列输出。对于客舱号(Cabin)的处理(与Name 类似),从客舱号中提取客舱类别并进行 one-hot 编码。

2023-10-14 21:23:37 791 1

原创 混淆矩阵篇

人们通常使用精准率和召回率这两个指标,来评价二分类模型的分析效果。但是当这两个指标发生冲突时,我们很难在模型之间进行比较,于是用F1来进行评判。PR曲线:以Precision为Y轴,Recall为X轴绘制而成。F1 是 precision 和 recall 的调和平均数。预测误判为正例的负样本数量占实际所有负样本的比例。预测正确的正样本数量占实际所有正样本的比例。假正率(FPR) = 1- 特异度 =效果较低,但用于预测股票已经很不错了。真正率(TPR) = 灵敏度 =效果非常好,但一般不太可能。

2023-10-13 19:08:34 337

原创 Pytorch-加载数据集

然后再按照batch_size的大小分组,使用2进程。shufffle=True 就是把数据打乱。python使用多进程会报错,要把训练放入。里面,代码就会通过了。

2023-10-07 11:17:56 57 1

原创 Pytorch-多维特征输入

神经网络中神经元越多,学习能力就越强,但学习能力强可能会把输入样本中的噪声的规律也学习到,学习应有泛化能力。要想把一个多维空间转换为一维空间的非线性空间变换,要在神经网络里引入激活函数。激活函数给线性变换增加非线性因子,从而可以拟合非线性变换。

2023-09-18 20:53:42 47

原创 Pytorch-逻辑回归

拿MNIST数据集来解释,把测试的数据为0,1,2,...,9的概率(P0,P1,P2,...,P9的概率相加为1)分别算出来作比较,选择概率最大的那个分类。比较两个分布之间的差异,二分类可以使用交叉熵BCE函数,预测值与标签越接近,损失值越小。torchvision包提供一些比较流行的数据集,其中包括MNIST。1/(1+e^-x) 使概率在(0,1)Logistic回归实质上是分类。

2023-09-18 17:51:36 67

原创 Pytorch-线性回归

a.计算y_pred。2.设计模型 (计算y_pred)模型 y = w*x + b 代码。4.训练周期(前馈 反馈 更新)3.构建损失函数和优化器。

2023-09-15 14:16:37 120 1

原创 Pytorch-反向传播

如果是非常复杂的网络,无法直接计算。但是如果把网络看作图,通过图传播梯度,就能把梯度计算出来,即反向传播。计算y = w1x^2 + w2x + b 的梯度代码实现。计算y = wx 的梯度代码实现。

2023-09-14 19:28:00 192 1

原创 Pytorch-梯度下降

梯度下降算法可以并行运算率高,随机梯度下降算法性能好但时间复杂度高。可以选择折中的方法就是Bach,就是批量的随机梯度下降。随机梯度下降可能会跨过鞍点,不用对所有样本求导,只是随机选一个样本去更新。梯度下降只能找到局部最优,无法找到全局最优。优化目标:寻找目标函数最小的权重组合。梯度下降是往梯度负方向走。

2023-09-13 21:01:11 100 2

原创 Pytorch-线性模型

B站up主刘二大人视频源代码以及作业 传送门。

2023-07-07 17:34:55 204 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除