代码随想录算法训练营第二天| 977.有序数组的平方 、209.长度最小的子数组、 59.螺旋矩阵II

977. 有序数组的平方

在这里插入图片描述

题目链接:977. 有序数组的平方
文档讲解:代码随想录
状态:so easy

刚开始看到题目第一反应就是平方之后进行排序,数据量在 1 0 4 10^4 104,可以使用O(nlogn)的排序。但是更好的方式是使用双指针,详见题解。

题解

双指针题解:

public int[] sortedSquares(int[] nums) {
    // 初始化指向数组头和尾的指针
    int front = 0, rear = nums.length - 1;
    // 初始化结果数组的最后一个索引
    int index = nums.length - 1;
    // 创建一个与输入数组长度相同的结果数组
    int[] res = new int[nums.length];

    // 当头指针没有超过尾指针时,继续循环
    while (front <= rear) {
        // 比较头指针和尾指针指向的数的平方大小
        if (nums[front] * nums[front] > nums[rear] * nums[rear]) {
            // 如果头指针指向的数的平方较大,则将其放入结果数组的当前索引位置
            res[index] = nums[front] * nums[front];
            // 头指针向右移动一位
            front++;
        } else {
            // 如果尾指针指向的数的平方较大或相等,则将其放入结果数组的当前索引位置
            res[index] = nums[rear] * nums[rear];
            // 尾指针向左移动一位
            rear--;
        }
        // 将结果数组的索引向左移动一位
        index--;
    }

    // 返回排序后的平方数组
    return res;
}

209. 长度最小的子数组

在这里插入图片描述

题目链接:209. 长度最小的子数组
文档讲解:代码随想录
状态:so easy

思路:因为是连续子数组,所以可以考虑滑动窗口求和,然后左右放缩找满足条件的最小长度。

题解

双指针题解

public int minSubArrayLen(int target, int[] nums) {
    // 初始化当前子数组的和
    int sum = 0;
    // 初始化最小长度为一个很大的值
    int minLen = Integer.MAX_VALUE;
    // 初始化两个指针i和j,i为当前遍历到的数组位置,j为子数组的起始位置
    for (int i = 0, j = 0; i < nums.length; i++) {
        // 将当前元素加入到子数组的和中
        sum += nums[i];
        // 当子数组的和大于等于目标值时,执行下面的循环
        while (sum >= target) {
            // 更新最小长度为当前子数组的长度
            minLen = Math.min(minLen, i - j + 1);
            // 将子数组起始位置的元素从和中减去,然后将子数组的起始位置向右移动一位
            sum -= nums[j++];
        }
    }
    // 如果最小长度仍然为初始值,说明没有找到满足条件的子数组,返回0
    // 否则返回最小长度
    return minLen == Integer.MAX_VALUE ? 0 : minLen;
}

59. 螺旋矩阵 II

在这里插入图片描述

题目链接:59. 螺旋矩阵 II
文档讲解:代码随想录
状态:还行,刚开始卡了一小会儿。

思路:这个算法的目标是生成一个 n x n 的螺旋矩阵,其中矩阵元素按顺时针方向依次递增。我们可以利用四个边界变量(top、left、right、bottom)来逐步收缩矩阵的边界,并在每一步按顺时针方向填充矩阵。

题解

public int[][] generateMatrix(int n) {
    // 创建一个n x n的矩阵
    int[][] matrix = new int[n][n];
    // 初始化填入矩阵的数字
    int num = 1;
    // 初始化边界变量
    int top = 0, left = 0, right = n - 1, bottom = n - 1;

    // 当矩阵的上下边界和左右边界没有重叠时,继续填充矩阵
    while (top <= bottom && left <= right) {
        // 从左向右填充当前上边界所在行
        for (int i = left; i <= right; i++) {
            matrix[top][i] = num++;
        }
        // 上边界向下移动
        top++;
        // 从上到下填充当前右边界所在列
        for (int i = top; i <= bottom; i++) {
            matrix[i][right] = num++;
        }
        // 右边界向左移动
        right--;

        // 确保当前下边界在上边界下方,然后从右向左填充当前下边界所在行(如果是m*n的矩阵,这个不能少)
        if (top <= bottom) {
            for (int i = right; i >= left; i--) {
                matrix[bottom][i] = num++;
            }
            // 下边界向上移动
            bottom--;
        }

        // 确保当前左边界在右边界左方,然后从下到上填充当前左边界所在列
        if (left <= right) {
            for (int i = bottom; i >= top; i--) {
                matrix[i][left] = num++;
            }
            // 左边界向右移动
            left++;
        }
    }
    // 返回填充好的矩阵
    return matrix;
}

拓展

类似螺旋矩阵题的核心思路是利用边界变量来逐步收缩图形的边界。解题步骤如下:

  1. 初始化边界;
  2. 按要求进行模拟,最外层的while循环 控制边界收缩的范围,里面的for循环和边界变量的加加减减 模拟收缩过程 ;
  3. 边界控制,如果是m*n的矩阵还要注意边界变量的变化不能超出边界收缩的范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值