题意
给一个直方图,求直方图中的最大矩形的面积。例如,下面这个图片中直方图的高度从左到右分别是2, 1, 4, 5, 1, 3, 3, 他们的宽都是1,其中最大的矩形是阴影部分。
输入格式说明:输入包含多组数据。每组数据用一个整数n来表示直方图中小矩形的个数,你可以假定1 <= n <= 100000. 然后接下来n个整数h1, …, hn, 满足 0 <= hi <= 1000000000. 这些数字表示直方图中从左到右每个小矩形的高度,每个小矩形的宽度为1。 测试数据以0结尾。
输出格式说明:对于每组测试数据输出一行一个整数表示答案。样例: input: 7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0 output: 8 4000
思路
- 面积最大,就是长乘高最大,所以呢,对于每一个高,尽可能的使得它的长最大,那么就是寻找左边和右边第一个比它小的元素(高)
- 一种暴力的方法,就是对于每一个高都依次去遍历,去找右边/左边第一个符合条件的元素,那么这个复杂度是受不了的,是O(n^2) ;
- 所以此处应用了单调栈,可以一次性的求出,所有元素(高)右边或者左边第一个符合条件的元素,这个复杂度是线性的,两次就可以完全求出。
- 在应用单调栈的过程中,使用的是一个结构体数组,里面包含了这个矩形的高,left(左边界–符合条件),right(右边界),ans(下标),left和right主要通过ans 进行求出,所以非常必要;
- 具体的单调栈思路在代码中体现
结论
- 此题在OJ上运行的时候出现很多次ce,最后得知原因,如果你定义了动态数组,例如,int *p=new int[n],那么你把这个数组当为参数传的时候,在子函数中的形参中,例如 void area(int *p)应该是无误的,但是如果你使用了void are(int p[])可能编译器会报错;
- 你如果定义了静态数组,那么 void area(int p[])也会进行报错;万分注意
- 警告: 注意看数据范围,该用long long 不要用int ;
代码
#include<iostream>
#include<algorithm>
using namespace std;
struct squre {
long long int left;
long long int right;
long long int high;
long long int ans;
bool operator<(const squre& s)
{
return ((right - left - 1) * high) < ((s.right - s.left - 1) * s.high);
}
squre& operator=(const squre& s)
{
left = s.left;
right = s.right;
high = s.high;
ans = s.ans;
return *this;
}
};
struct squre st[100000], st1[100000];
long long top = 0, top1 = 0;
void area(struct squre p[], long long n)
{
//确定右边界
top++;
st[top] = p[0]; //先将第一个元素入栈
for (long long int i = 1; i < n; i++)
{
while (top > 0 && p[i].high < st[top].high) ///单调递减栈
{//如果最新想入栈的元素小于栈顶元素,则将栈顶元素弹出栈,同时此元素就是栈顶元素往右的第一个比自己小的元素
p[st[top].ans].right = i;
top--;
}
top++;
st[top] = p[i];//入栈
}
if (top != 0)
{
while (top > 0)
{
p[st[top].ans].right = n;
top--;
}
}
//确定左边界
top1++;
st1[top1] = p[n - 1];
int count1 = 0;
for (long long int i = n - 2; i >= 0; i--)
{
while (top1 > 0 && p[i].high < st1[top1].high)
{
p[st1[top1].ans].left = i;
top1--;
}
top1++;
st1[top1] = p[i];
}
if (top1 != 0)
{
while (top1 > 0)
{
p[st1[top1].ans].left = -1;
top1--;
}
}
sort(p, p + n);
long long int sum = (p[n - 1].right - p[n - 1].left - 1) * p[n - 1].high;
cout << sum << endl;
}
int main()
{
long long int n;
while (cin >> n)
{
if (n == 0)
break;
squre* pa = new struct squre[n];
for (long long int i = 0; i < n; i++)
{
cin >> pa[i].high;
pa[i].ans = i;
}
area(pa, n);
}
return 0;
}