莫凡pyTorch1


一、torch与numpy

1.绝对值、三角函数、平均值

import torch
import numpy as np

np_data = np.arange(6).reshape((2, 3))
# numpy转torch
torch_data = torch.from_numpy(np_data)
# torch转numpy
tensor2array = torch_data.numpy()

调用绝对值、三角函数、平均值等,numpy与torch基本一样

data = [-1, -2, 1, 2]
# torch.FloatTensor将list ,numpy转化为tensor(32位浮点)
tensor = torch.FloatTensor(data)  # 32-bit floating point

np.abs(data)
torch.abs(tensor)

np.sin(data)
torch.sin(tensor)

2.矩阵乘法

# matrix multiplication
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data)  # 32-bit floating point

np.matmul(data, data),     # [[7, 10], [15, 22]]
data.dot(data)    //np.dot可以用,tensor.dot只接受一维数组计算,tensor.dot![请添加图片描述](https://img-blog.csdnimg.cn/0f8afe74a8134d4d845f64831f79ac0b.png)
改用mm
torch.mm(tensor, tensor)   # [[7, 10], [15, 22]]
tensor.mm(tensor, tensor)

tensor.mm(tensor)                       //矩阵乘法
结果	tensor([[  7.,  10.],
      	    [ 15.,  22.]])
tensor * tensor                         //对位相乘
结果	tensor([[  1.,   4.],
   	        [  9.,  16.]])
torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1]))      //dot一维数组相乘
结果	   tensor(7.)

1.0版本之前variable在旧版本中可以反向传播;1.0版本删掉了variable,tensor可直接反向传播;当前版本又可以用了

import torch
from torch.autograd import Variable
tensor = torch.FloatTensor([[1,2],[3,4]])            # build a tensor
variable = Variable(tensor, requires_grad=True) 

也可用tensor替代variable

tensor = torch.tensor([[1,2],[3,4]], dtype=float, requires_grad=True)         # build a tensor
print(tensor)       # [torch.FloatTensor of size 2x2]

运行结果:
tensor([[1., 2.],
        [3., 4.]], dtype=torch.float64, requires_grad=True)
tensor = torch.tensor([[1,2],[3,4]], dtype=float, requires_grad=True) # build a tensor
t_out = torch.mean(tensor*tensor)
print(t_out)
t_out.backward()     //反向传播,计算梯度
print(tensor.grad)    //打印出梯度

运行结果:
tensor(7.5000, dtype=torch.float64, grad_fn=<MeanBackward0>)
tensor([[0.5000, 1.0000],
        [1.5000, 2.0000]], dtype=torch.float64)

梯度计算过程(求导过程)
梯度计算过程
直接打印出数据,以下两个都可,结果一样

print(tensor.data.numpy())
print(tensor.detach().numpy())
运行结果:
[[1. 2.]
 [3. 4.]]

3.画出四个激活函数

import torch
import  torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

# torch.linspace返回一个一维的tensor(张量),包含了从start到end(包括端点)的等距的steps个数据点。
x = torch.linspace(-5,5,200)
x = Variable(x)
x_np = x.data.numpy()

# matplot需要将矩阵数据变成数组,才能对应x画成直线
y_relu = F.relu(x).data.numpy()
y_sigmoid = F.sigmoid(x).data.numpy()
y_tanh = F.tanh(x).data.numpy()
# F.softmax用来做概率图
y_softplus = F.softplus(x).data.numpy()

在这里插入图片描述

二、回归分类

1.画回归散点图

# torch.unsqueeze()给数据增加维度;torch.squeeze()对数据降维;torch.linspace(3,10,5)返回从3到10等距离的5个一维张量
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
# pow(2)表示x的2次方,也有math.pow(x,2)的写法;torch.rand(*sizes, out=None) 作为噪声点,保持和x一个形状,返回[0,1)之间的均匀分布
y = x.pow(2) + 0.2*torch.rand(x.size())     # noisy y data (tensor), shape=(100, 1)

x, y = Variable(x),Variable(y)
# scatter打印散点图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

在这里插入图片描述

2.回归网络

class Net(torch.nn.Module):  # 本类继承torch的Module模块,来作为net的主模块
    def __init__(self, n_feature, n_hidden, n_output):  # 搭建层的信息,相当于画图纸
        super(Net, self).__init__()  # super为官方定义的格式
        # nn.Linear对输入数据做线性变换y=wx+b,并学习更新偏置b的值;Linear需要输入两个参数(上一层神经元的个数,本层的神经元个数)
        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # hidden layer
        self.predict = torch.nn.Linear(n_hidden, n_output)  # output layer

    def forward(self, x):  # 前向传递,相当于根据图纸盖楼
        x = F.relu(self.hidden(x))  # 隐含层用激活函数激活
        x = self.predict(x)  # x放入输出层输出,输出一般不用激活函数,会影响结果
        return x

net = Net(1, 10, 1)
print(net)

运行结果:
Net(
  (hidden): Linear(in_features=1, out_features=10, bias=True)
  (predict): Linear(in_features=10, out_features=1, bias=True)
)
# 构建一个optimizer对象,用来保持当前参数状态并基于计算得到的梯度进行参数更新
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)   # 使用SGD随机梯度下降法优化,学习步长一般小于1
# 对SGD说明:普通训练方法,重复不断的把整套数据放入神经网络NN中训练,消耗的计算资源会很大;
# SGD会把数据拆分后再分批不断放入NN中计算,虽然不能反映整体数据的情况,不过却很大程度上加速NN的训练过程,而且也不会丢失太多准确率.
loss_func = torch.nn.MSELoss()  # 均方差作为损失函数

plt.ion()   # matplot实时打印

for t in range(100):
    # x是之前定义的100个数,net(x)是100个数经过神经网络(正向传播)后的100个值
    prediction = net(x)  # 预测;input x and predict based on x
    
    # 训练4步
    loss = loss_func(prediction, y)  # 计算损失;输入格式固定(1. nn output, 2. target)
    optimizer.zero_grad()  # 梯度清零;即求导前将导数归0,为了能使误差函数取到极小值(局部最优)
    loss.backward()  # 计算当前梯度,反向传播,来实现可训练参数的更新
    optimizer.step()  # 在backward()之类的函数计算好后调用这个函数,更新所有的参数

    if t % 10 == 0:    # 每学习5步打印一次
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.show()
        plt.pause(0.1)

plt.ioff()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.分类网络

import torch
from torch.autograd import Variable
import torch.nn.functional as F  # 包含了构筑神经网络结构基本元素的包
import matplotlib.pyplot as plt

# 假设数据
n_data = torch.ones(100, 2)  # 生成100行2列的张量
x0 = torch.normal(2 * n_data, 1)  # 随机生成均值为2 * n_data,标准差为1的正态分布,shape=(100, 2)
y0 = torch.zeros(100)  # y-shape=(100, 1)
x1 = torch.normal(-2 * n_data, 1)  # 随机生成均值为-2 * n_data,标准差为1的正态分布,shape=(100, 2)
y1 = torch.ones(100)  # class1 y data (tensor), shape=(100, 1)
# torch.cat将两个张量(tensor)拼接在一起,0为上下拼接,1为左右拼接
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # shape (200, 2) FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)  # shape (200,) LongTensor = 64-bit integer

# 神经网络只能输入variable形式,要把变装入variable容器里
x, y = Variable(x), Variable(y)

plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show()


class Net(torch.nn.Module):  # 本类继承torch的Module模块,来作为net的主模块
    def __init__(self, n_feature, n_hidden, n_output):  # 搭建层的信息,相当于画图纸
        super(Net, self).__init__()  # super为官方定义的格式
        # nn.Linear对输入数据做线性变换y=wx+b,并学习更新偏置b的值;Linear需要输入两个参数(上一层神经元的个数,本层的神经元个数)
        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # hidden layer
        self.predict = torch.nn.Linear(n_hidden, n_output)  # output layer

    def forward(self, x):  # 前向传递,相当于根据图纸盖楼
        x = F.relu(self.hidden(x))  # 隐含层用激活函数激活
        x = self.predict(x)  # x放入输出层输出,输出一般不用激活函数,会影响结果
        return x


# 分类任务常用到One-Hot向量:一个向量中只有某一项为1,其余全为0
net = Net(n_feature=2, n_hidden=10, n_output=2)  # 有两个输入例子,分类成2类
print(net)  # net architecture

# 构建一个optimizer对象,用来保持当前参数状态并基于计算得到的梯度进行参数更新
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 使用SGD随机梯度下降法优化,学习步长一般小于1
# 对SGD说明:普通训练方法,重复不断的把整套数据放入神经网络NN中训练,消耗的计算资源会很大;
# SGD会把数据拆分后再分批不断放入NN中计算,虽然不能反映整体数据的情况,不过却很大程度上加速NN的训练过程,而且也不会丢失太多准确率.
loss_func = torch.nn.CrossEntropyLoss()  # 通过交叉熵损失函数将One-Hot转化成总和为1的概率,如[0.1, 0.2, 0.7]

plt.ion()  # matplot实时打印

for t in range(100):
    # x是之前定义的100个数,net(x)是100个数经过神经网络(正向传播)后的100个值
    out = net(x)  # 预测;input x and predict based on x
    # prediction = torch.max(F.softmax(out, dim=1), 1)[1]  由于CrossEntropy包含了softmax激活函数,所以这里不再加

    # 训练4步
    loss = loss_func(out, y)  # 计算损失;输入格式固定(1. nn output, 2. target)
    optimizer.zero_grad()  # 梯度清零;即求导前将导数归0,为了能使误差函数取到极小值(局部最优)
    loss.backward()  # 计算当前梯度,反向传播,来实现可训练参数的更新
    optimizer.step()  # 在backward()之类的函数计算好后调用这个函数,更新所有的参数

    if t % 10 == 0 or t in [3, 6]:
        # plot and show learning process
        plt.cla()
        _, prediction = torch.max(F.softmax(out), 1)   # torch.max返回值有两个,第一个是max是多少,第二个是max的index
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = sum(pred_y == target_y) / 200.
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.show()
        plt.pause(0.1)

plt.ioff()

在这里插入图片描述

4.两种搭建框架(画图纸)的方法

//method1         建立net类,并实例化
class Net(torch.nn.Module):  # 本类继承torch的Module模块,来作为net的主模块
    def __init__(self, n_feature, n_hidden, n_output):  # 搭建层的信息,相当于画图纸
        super(Net, self).__init__()  # super为官方定义的格式
        # nn.Linear对输入数据做线性变换y=wx+b,并学习更新偏置b的值;Linear需要输入两个参数(上一层神经元的个数,本层的神经元个数)
        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # hidden layer
        self.predict = torch.nn.Linear(n_hidden, n_output)  # output layer

    def forward(self, x):  # 前向传递,相当于根据图纸盖楼
        x = F.relu(self.hidden(x))  # 隐含层用激活函数激活
        x = self.predict(x)  # x放入输出层输出,输出一般不用激活函数,会影响结果
        return x
net1 = Net(1, 10, 1)


//method2     调用Sequential来实例化
# easy and fast way to build your network
net2 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1)
)
print(net1)     # net1 architecture
print(net2)

运行结果:

Net (
  (hidden): Linear (1 -> 10)
  (predict): Linear (10 -> 1)
)
Sequential (
  (0): Linear (1 -> 10)
  (1): ReLU ()
  (2): Linear (10 -> 1)
)

5. 保存网络和提取网络

(用于保存训练了一半的网络,提取处理继续训练)

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt


torch.manual_seed(1)

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)


def save():
    # 快速搭建法
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),     # 隐藏层
        torch.nn.ReLU(),            # 隐藏层的激活函数
        torch.nn.Linear(10, 1)      # 输出层
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()

    for t in range(100):
        prediction = net1(x)
        loss = loss_func(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # plot result
    plt.figure(1, figsize=(10, 3))
    plt.subplot(131)
    plt.title('Net1')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

    # 2 ways to save the net
    torch.save(net1, 'net.pkl')  # 保留整个网络,以.pkl格式保持
    torch.save(net1.state_dict(), 'net_params.pkl')   # 保留节点参数


# 提取保存的网络
def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pkl')   # 以.load函数提取保存的网络
    prediction = net2(x)           # 这里将x导入net传给prediction是为了画图

    # plot result
    plt.subplot(132)
    plt.title('Net2')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)


# 提取保存网络的参数
def restore_params():
    # restore only the parameters in net1 to net3
    # 提取保存的保留参数需先自己快速建一个网络,提取网络参数比提取整个网络速度快,推荐使用
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )

    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pkl'))      # 使用.load_state_dict函数进行
    prediction = net3(x)        # 画图传参

    # plot result
    plt.subplot(133)
    plt.title('Net3')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.show()


save()
# restore entire net (may slow)
restore_net()
# restore only the net parameters
restore_params()

在这里插入图片描述

6.批训练 minibatch trainning

数据过大时,将数据分成多批次进行训练,来提升训练速度和训练效率

import torch
import torch.utils.data as Data   # 使用data模块来进行小批训练

# 每小批抽取5个数据训练
BATCH_SIZE = 5

# linspace返回一个一维的tensor(张量),包含了从start=1到end=10(包括端点)的等距的steps=10个数据点。
x = torch.linspace(1, 10, 10)       # this is x data (torch tensor)
y = torch.linspace(10, 1, 10)

# 将数据放入torch的数据库TensorDataset中
torch_dataset = Data.TensorDataset(x, y)  # 训练数据data_tensor,计算误差数据target_tensor
loader = Data.DataLoader(       # loader\DataLoader将数据变成小批
    dataset=torch_dataset,      # torch TensorDataset format
    batch_size=BATCH_SIZE,      # mini batch size
    shuffle=True,               # 是否先将数据打乱,再进行抽样;false为不打乱
    num_workers=0,              # 加载数据进程数;用cpu和windows跑需要设置=0;GPU跑多设几个,加快寻批速度
)

for epoch in range(3):   # 把所以数据整体训练3次
    # enumerate给loader中每个数据加一个索引
    for step, (batch_x, batch_y) in enumerate(loader):  # for each training step
        # train your data...
        print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
              batch_x.numpy(), '| batch y: ', batch_y.numpy())

运行结果:
Epoch:  0 | Step:  0 | batch x:  [6. 8. 2. 7. 5.] | batch y:  [5. 3. 9. 4. 6.]
Epoch:  0 | Step:  1 | batch x:  [ 1. 10.  4.  3.  9.] | batch y:  [10.  1.  7.  8.  2.]
Epoch:  1 | Step:  0 | batch x:  [4. 6. 1. 7. 8.] | batch y:  [ 7.  5. 10.  4.  3.]
Epoch:  1 | Step:  1 | batch x:  [10.  5.  9.  2.  3.] | batch y:  [1. 6. 2. 9. 8.]
Epoch:  2 | Step:  0 | batch x:  [5. 9. 8. 7. 6.] | batch y:  [6. 2. 3. 4. 5.]
Epoch:  2 | Step:  1 | batch x:  [ 2. 10.  3.  1.  4.] | batch y:  [ 9.  1.  8. 10.  7.]

7.优化器Optimizer

import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

# 定义超参数(全大写,提前赋值定义) hyper parameters
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))

# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()

# minibatch training需要写dataset和loader
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    dataset=torch_dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,      # 一般用shuffle=true,打乱数据会有更好的训练效果
    num_workers=0, )   # windows中num_works=0,=0用主线程cpu跑


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)  # 隐含层有20个神经元
        self.predict = torch.nn.Linear(20, 1)  # output layer

    def forward(self, x):
        x = F.relu(self.hidden(x))  # activation function for hidden layer
        x = self.predict(x)  # linear output
        return x


# 定义4个不同的神经网络,后续使用不同的优化器进行优化
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]  # 将定义的网络放在一个list中,方便for循环提取,一个一个训练

# 建立对应网络的优化器
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)  # 动态SGD
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]    # 放一个优化器list

#  创建损失函数
loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []]   # 创建误差list,记录4个损失函数的误差变化曲线

# training
for epoch in range(EPOCH):
    print('Epoch: ', epoch)
    for step, (batch_x, batch_y) in enumerate(loader):          # for each training step
        b_x = Variable(batch_x)    # 改版后用不用variable包装都可以
        b_y = Variable(batch_y)	   # 不包装直接赋值,b_y = batch_y

        for net, opt, l_his in zip(nets, optimizers, losses_his):
            output = net(b_x)              # get output for every net
            loss = loss_func(output, b_y)  # compute loss for every net
            opt.zero_grad()                # clear gradients for next train
            loss.backward()                # backpropagation, compute gradients
            opt.step()                     # apply gradients
            l_his.append(loss.item())     # loss recoder

labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
    plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()

在这里插入图片描述
在这里插入图片描述


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值