题目
思路
对于构造函数以及reset函数比较简单,可以用一个类的私有变量保存下Nums(在构造函数中保存),每次调用reset()时将这个私有变量再赋值出去。
对于shuffle(),要求等概率返回某个方案,或者说每个元素都等概率出现在每个位置中。
可以使用Knuth 洗牌算法 ,在O(n)的复杂度内等概率地返回某个方案。
简单地说就是将数组分为两部分,一部分是完成随机的,一部分是原始数组。循环选择i,从[i,size()-1]中随机选择一个数与nums[i]交换,此时nums[i]就归属于完成随机的部分,不断使i++即可。
对于下标为 0 位置,从 [0,n−1] 随机一个位置进行交换,共有 n 种选择;下标为 1 的位置,从[1,n−1] 随机一个位置进行交换,共有 n −1 种选择 …
洗牌算法代码为:
for(int i = 0; i<res.size();i++){
int j = i + rand()%(res.size()-i);
...
}
洗牌算法可以保证每次从n中方案中取出任何一种方案都是等概率的。
代码
class Solution {
public:
Solution(vector<int>& nums) {
this->nums = nums;
}
vector<int> reset() {
return this->nums;
}
vector<int> shuffle() {
vector<int> res(this->nums);
for(int i = 0; i<res.size();i++){
int j = i + rand()%(res.size()-i);
swap(res[i],res[j]);
}
return res;
}
private:
vector<int> nums;
};