多目标规划基础知识

本文介绍了多目标规划中的有效解概念,包括无量纲化、数量级归一化方法如线性加权、ɛ约束法、理想点法和优先级法。同时概述了目标规划的基本概念,涉及正负偏差变量、约束类型和优先因子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要参考:
《数学建模算法与应用》(第三版)
作者 司守奎、孙玺菁

一般来说,多目标规划问题(MP)的绝对最优解是不常见的,当绝对最优解不存在时,引入非劣解或者有效解,也称为Pareto最优解
//注:帕累托最优解通常指,在其他目标解不恶化的情况下,使某一目标得到优化。

在多目标规划问题中,通常不提最优解的概念,只提满意解或者有效解。

1.求解有效解的集中常用方法

通常在求解之前,需要对目标函数进行预处理:
(1)无量纲化处理。
(2)数量级的归一化处理。当每个目标函数的数量级差异较大时,容易出现大数吃小数的现象,即数量级较大的目标在决策分析过程中容易占有,从而影响决策结果。

常用方法:

(1)线性加权法。
根据目标函数的重要性,确定权重,且权重系数之和为1。

(2)ɛ约束法
根据决策者偏好,选择一个主要关注的参考目标,而将其他目标放到约束条件中去。
ɛ是指决策者对某个目标而言的容许接受阈值。

在这里插入图片描述

(3)理想点法
以每个单目标最优值为该目标的理想值,使每个目标函数值与理想值的加权平方和最小。

在这里插入图片描述

(4)优先级法。

根据目标重要性分成不同优先级,先求优先级高的目标函数最优值,在确保优先级高的目标获得不低于最优质的条件下,再求优先级低的目标函数。

2.目标规划

即运筹学中的目标规划,此处简单介绍。

相关概念:

(1)正、负偏差变量
(2)绝对(刚性)约束和目标约束
(3)优先因子(优先等级)与权系数

在目标规划的数学模型构建中,需要确定目标值、优先等级与权系数,其具有一定的主观性和模糊性,可以用专家评定法加以量化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值