常规的盒式不确定约束:不确定性构建具有对称性,但实际情况下的不确定问题大多呈非对称性;不可能所有场景在所有时刻均达到最劣场景,该不确定性构建过于保守。
针对上述问题,可以尝试改变不确定约束的构建方式。
前文中,彭春华教授研究的CGDT理论 ,通过引入机会约束和置信区间,解决了上述问题。
本文将继续探究别的论文对该问题的解决方式。
《考虑风电预测误差相关性的负荷恢复鲁棒优化》
采用盒式集合刻画负荷预测误差,采用线性多面体集合描述相关性的风电预测误差。
线性多面体集合的刻画步骤:
1)基于历史误差场景构建体积最小且覆盖所有场景的高维椭球不确定集。
2)旋转平移该椭球不确定集,得到对称轴与坐标轴对称的高维椭球不确定集。
3)确定高维椭球的顶点坐标(极限场景)的计算以及初始线性多面体集合的确定。
4)缩放线性多面体不确定集用以调节集合的保守性。(修正顶点坐标)
《适用于鲁棒调度的风电场出力不确定性集合建模与评估》
典型的风电场出力不确定集合在风电出力置信区间的基础上,进一步考虑风电场出力的时间平滑效应和空间集群效应,其中不确定性约束采用盒式约束加以表示。
另一种不确定约束的表示方法 (EHD):
由于本论文涉及到各风电场之间的相互影响,博主不涉及到相关网络的构建,因此不做详细描述。
《Game Theoretical Scheduling of Modern Power Systems with Large-scale Wind Power Integration》
本文考虑从三个角度考虑风电出力。每一个方面都采用对应的多面体集加以描述。
由于所有的风电厂不可能在同一时刻遭遇到最差场景,因此基于空间尺度,引入一个不确定预算集。
《考虑风电不确定性的电–气能源系统数据驱动鲁棒优化调度》
通过无穷维高斯混合模型对风电预测误差进行聚类,考虑风电厂间出力的相关性,建立基于数据驱动的风电预测误差不确定集。
鲁棒优化克服了随机优化计算量大的缺点,仅用一不确定集表征,但忽视了概率信息,其调度计划往往过于保守。因此可以采用数据驱动的方法,对不确定集的生成方式做出改进。
但是该方法容易陷入保守性和鲁棒性的两难。过大的不确定集容易涵盖较多的零概率区域,导致调度结果过于保守。
对此,本文综合考虑风速、风机以及电网等诸多因素对风带你预测误差的影响,采用非参数贝叶斯方法,用无穷维高斯混合模型对风电预测误差样本集进行聚类。
《考虑风电不确定度的风-火-水-气-核-抽水蓄能多源协同旋转备用优化》
采用多面体不确定集刻画风电不确定性。
why?盒式不确定集以其可操作性强、波动边界信息易于获取等优点而被广泛应用。但其因具有极强的鲁棒性而使得备用优化策略过于保守,在实际情况下,所有风电场恰好在相同时刻均到达波动最严重的情况概率极低。
风电不确定度 Γ 在本质上限制了风电不确定功率值与预测值的总偏差。Γ越大,则波动更加严重。