第1章 电商业务简介
1.1 电商业务流程
电商的业务流程可以以一个普通用户的浏览足迹为例进行说明,用户点开电商首页开始浏览,可能会通过分类查询也可能通过全文搜索寻找自己中意的商品,这些商品无疑都是存储在后台的管理系统中的。
当用户寻找到自己中意的商品,可能会想要购买,将商品添加到购物车后发现需要登录,登录后对商品进行结算,这时候购物车的管理和商品订单信息的生成都会对业务数据库产生影响,会生成相应的订单数据和支付数据。
订单正式生成之后,还会对订单进行跟踪处理,直到订单全部完成。
电商的主要业务流程包括用户前台浏览商品时的商品详情的管理,用户商品加入购物车进行支付时用户个人中心&支付服务的管理,用户支付完成后订单后台服务的管理,这些流程涉及到了十几个甚至几十个业务数据表,甚至更多。
1.2 电商常识(SKU、SPU)
SKU=Stock Keeping Unit(库存量基本单位)。现在已经被引申为产品统一编号的简称,每种产品均对应有唯一的SKU号。
SPU(Standard Product Unit):是商品信息聚合的最小单位,是一组可复用、易检索的标准化信息集合。
例如:iPhoneX手机就是SPU。一台银色、128G内存的、支持联通网络的iPhoneX,就是SKU。
SPU表示一类商品。好处就是:可以共用商品图片,海报、销售属性等。
1.3 电商业务表结构
本电商数仓系统涉及到的业务数据表结构关系。这24个表以订单表、用户表、SKU商品表、活动表和优惠券表为中心,延伸出了优惠券领用表、支付流水表、活动订单表、订单详情表、订单状态表、商品评论表、编码字典表退单表、SPU商品表等,用户表提供用户的详细信息,支付流水表提供该订单的支付详情,订单详情表提供订单的商品数量等情况,商品表给订单详情表提供商品的详细信息。本次讲解只以此24个表为例,实际项目中,业务数据库中表格远远不止这些。
1.3.1 订单表(order_info)
标签 含义
id 订单编号
consignee 收货人
consignee_tel 收件人电话
final_total_amount 总金额
order_status 订单状态
user_id 用户id
delivery_address 送货地址
order_comment 订单备注
out_trade_no 订单交易编号(第三方支付用)
trade_body 订单描述(第三方支付用)
create_time 创建时间
operate_time 操作时间
expire_time 失效时间
tracking_no 物流单编号
parent_order_id 父订单编号
img_url 图片路径
province_id 地区
benefit_reduce_amount 优惠金额
original_total_amount 原价金额
feight_fee 运费
1.3.2 订单详情表(order_detail)
标签 含义
id 编号
order_id 订单号
sku_id 商品id
sku_name sku名称(冗余)
img_url 图片名称(冗余)
order_price 商品价格(下单时sku价格)
sku_num 商品数量
create_time 创建时间
source_type 来源类型
source_id 来源编号
1.3.3 SKU商品表(sku_info)
标签 含义
id skuId
spu_id spuId
price 价格
sku_name 商品名称
sku_desc 商品描述
weight 重量
tm_id 品牌id
category3_id 品类id
sku_default_img 默认显示图片(冗余)
create_time 创建时间
1.3.4 用户表(user_info)
标签 含义
id 用户id
login_name 用户名称
nick_name 用户昵称
passwd 用户密码
name 真实姓名
phone_num 手机号
email 邮箱
head_img 头像
user_level 用户级别
birthday 生日
gender 性别:男=M,女=F
create_time 创建时间
operate_time 操作时间
1.3.5 商品一级分类表(base_category1)
标签 含义
id id
name 名称
1.3.6 商品二级分类表(base_category2)
标签 含义
id id
name 名称
category1_id 一级品类id
1.3.7 商品三级分类表(base_category3)
标签 含义
id id
name 名称
Category2_id 二级品类id
1.3.8 支付流水表(payment_info)
标签 含义
id 编号
out_trade_no 对外业务编号
order_id 订单编号
user_id 用户编号
alipay_trade_no 支付宝交易流水编号
total_amount 支付金额
subject 交易内容
payment_type 支付类型
payment_time 支付时间
1.3.9 省份表(base_province)
标签 含义
id id
name 省份名称
region_id 地区ID
area_code 地区编码
iso_code 国际编码
1.3.10 地区表(base_region)
标签 含义
id 大区id
region_name 大区名称
1.3.11 品牌表(base_trademark)
标签 含义
tm_id 品牌id
tm_name 品牌名称
1.3.12 订单状态表(order_status_log)
标签 含义
id 编号
order_id 订单编号
order_status 订单状态
operate_time 操作时间
1.3.13 SPU商品表(spu_info)
标签 含义
id 商品id
spu_name spu商品名称
description 商品描述(后台简述)
category3_id 三级分类id
tm_id 品牌id
1.3.14 商品评论表(comment_info)
标签 含义
id 编号
user_id 用户id
sku_id 商品id
spu_id spu_id
order_id 订单编号
appraise 评价 1 好评 2 中评 3 差评
comment_txt 评价内容
create_time 创建时间
1.3.15 退单表(order_refund_info)
标签 含义
id 编号
user_id 用户id
order_id 订单编号
sku_id sku_id
refund_type 退款类型
refund_amount 退款金额
refund_reason_type 原因类型
refund_reason_txt 原因内容
create_time 创建时间
1.3.16 加购表(cart_info)
标签 含义
id 编号
user_id 用户id
sku_id SKU商品
cart_price 放入购物车时价格
sku_num 数量
img_url 图片文件
sku_name sku名称 (冗余)
create_time 创建时间
operate_time 修改时间
is_ordered 是否已经下单
order_time 下单时间
source_type 来源类型
source_id 来源编号
1.3.17 商品收藏表(favor_info)
标签 含义
id 编号
user_id 用户id
sku_id 商品id
spu_id spu_id
is_cancel 是否已取消 0 正常 1 已取消
create_time 收藏时间
cancel_time 修改时间
1.3.18 优惠券领用表(coupon_use)
标签 含义
id 编号
coupon_id 购物券ID
user_id 用户ID
order_id 订单ID
coupon_status 优惠券状态
get_time 领券时间
using_time 使用时间
used_time 支付时间
expire_time 过期时间
1.3.19 优惠券表(coupon_info)
标签 含义
id 优惠券编号
coupon_name 优惠券名称
coupon_type 优惠券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券
condition_amount 满减金额
condition_num 满减件数
activity_id 活动编号
benefit_amount 优惠金额
benefit_discount 优惠折扣
create_time 创建时间
range_type 范围类型 1、商品 2、品类 3、品牌
spu_id 商品id
tm_id 品牌id
category3_id 品类id
limit_num 最多领用次数
operate_time 修改时间
expire_time 过期时间
1.3.20 活动表(activity_info)
标签 含义
id 活动id
activity_name 活动名称
activity_type 活动类型
activity_desc 活动描述
start_time 开始时间
end_time 结束时间
create_time 创建时间
1.3.21 活动订单关联表(activity_order)
标签 含义
id 编号
activity_id 活动id
order_id 订单编号
create_time 发生日期
1.3.22 优惠规则表(activity_rule)
标签 含义
id 编号
activity_id 活动id
condition_amount 满减金额
condition_num 满减件数
benefit_amount 优惠金额
benefit_discount 优惠折扣
benefit_level 优惠级别
1.3.23 编码字典表(base_dic)
标签 含义
dic_code 编号
dic_name 编码名称
parent_code 父编号
create_time 创建日期
operate_time 修改日期
1.3.24 参与活动商品表(activity_sku)(暂不导入)
标签 含义
id 编号
activity_id 活动id
sku_id sku_id
create_time 创建时间
第2章 业务数据采集模块
2.1 MySQL安装
2.1.1 安装包准备
1)卸载自带的Mysql-libs(如果之前安装过mysql,要全都卸载掉)
[atguigu@hadoop102 software]$ rpm -qa | grep -i -E mysql|mariadb | xargs -n1 sudo rpm -e --nodeps
2)将安装包和JDBC驱动上传到/opt/software,共计6个
01_mysql-community-common-5.7.16-1.el7.x86_64.rpm
02_mysql-community-libs-5.7.16-1.el7.x86_64.rpm
03_mysql-community-libs-compat-5.7.16-1.el7.x86_64.rpm
04_mysql-community-client-5.7.16-1.el7.x86_64.rpm
05_mysql-community-server-5.7.16-1.el7.x86_64.rpm
mysql-connector-java-5.1.27-bin.jar
2.1.2 安装MySQL
1)安装mysql依赖
[atguigu@hadoop102 software]$ sudo rpm -ivh 01_mysql-community-common-5.7.16-1.el7.x86_64.rpm
[atguigu@hadoop102 software]$ sudo rpm -ivh 02_mysql-community-libs-5.7.16-1.el7.x86_64.rpm
[atguigu@hadoop102 software]$ sudo rpm -ivh 03_mysql-community-libs-compat-5.7.16-1.el7.x86_64.rpm
2)安装mysql-client
[atguigu@hadoop102 software]$ sudo rpm -ivh 04_mysql-community-client-5.7.16-1.el7.x86_64.rpm
3)安装mysql-server
[atguigu@hadoop102 software]$ sudo rpm -ivh 05_mysql-community-server-5.7.16-1.el7.x86_64.rpm
4)启动mysql
[atguigu@hadoop102 software]$ sudo systemctl start mysqld
5)查看mysql密码
[atguigu@hadoop102 software]$ sudo cat /var/log/mysqld.log | grep password
2.1.3 配置MySQL
配置只要是root用户+密码,在任何主机上都能登录MySQL数据库。
1)用刚刚查到的密码进入mysql(如果报错,给密码加单引号)
[atguigu@hadoop102 software]$ mysql -uroot -p ‘password’
2)设置复杂密码(由于mysql密码策略,此密码必须足够复杂)
mysql> set password=password(“Qs23=zs32”);
3)更改mysql密码策略
mysql> set global validate_password_length=4;
mysql> set global validate_password_policy=0;
4)设置简单好记的密码
mysql> set password=password(“000000”);
5)进入msyql库
mysql> use mysql
6)查询user表
mysql> select user, host from user;
7)修改user表,把Host表内容修改为%
mysql> update user set host="%" where user=“root”;
8)刷新
mysql> flush privileges;
9)退出
mysql> quit;
2.2 业务数据生成
2.2.1 连接MySQL
通过MySQL操作可视化工具SQLyog连接MySQL。
2.2.2 建表语句
1)通过SQLyog创建数据库gmall
2)设置数据库编码
3)导入数据库结构脚本(gmall2020-04-01.sql)
注意:完成后,要记得右键,刷新一下对象浏览器,就可以看见数据库中的表了。
2.2.3 生成业务数据
1)在hadoop102的/opt/module/目录下创建db_log文件夹
[atguigu@hadoop102 module]$ mkdir db_log/
2)把gmall2020-mock-db-2020-04-01.jar和application.properties上传到hadoop102的/opt/module/db_log路径上。
3)根据需求修改application.properties相关配置
logging.level.root=info
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://hadoop102:3306/gmall?characterEncoding=utf-8&useSSL=false&serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=000000
logging.pattern.console=%m%n
mybatis-plus.global-config.db-config.field-strategy=not_null
#业务日期
mock.date=2020-06-14
#是否重置
mock.clear=1
#生成新用户数量
mock.user.count=1000
#男性比例
mock.user.male-rate=20
#用户数据变化概率
mock.user.update-rate:20
#收藏取消比例
mock.favor.cancel-rate=10
#收藏数量
mock.favor.count=100
#购物车数量
mock.cart.count=30
#每个商品最多购物个数
mock.cart.sku-maxcount-per-cart=3
#购物车来源 用户查询,商品推广,智能推荐, 促销活动
mock.cart.source-type-rate=60:20:10:10
#用户下单比例
mock.order.user-rate=95
#用户从购物中购买商品比例
mock.order.sku-rate=70
#是否参加活动
mock.order.join-activity=1
#是否使用购物券
mock.order.use-coupon=1
#购物券领取人数
mock.coupon.user-count=1000
#支付比例
mock.payment.rate=70
#支付方式 支付宝:微信 :银联
mock.payment.payment-type=30:60:10
#评价比例 好:中:差:自动
mock.comment.appraise-rate=30:10:10:50
#退款原因比例:质量问题 商品描述与实际描述不一致 缺货 号码不合适 拍错 不想买了 其他
mock.refund.reason-rate=30:10:20:5:15:5:5
4)并在该目录下执行,如下命令,生成2020-06-14日期数据:
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2020-04-01.jar
5)在配置文件application.properties中修改
mock.date=2020-06-15
mock.clear=0
6)再次执行命令,生成2020-06-15日期数据:
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2020-04-01.jar
2.2.4 业务数据建模
可借助EZDML这款数据库设计工具,来辅助我们梳理复杂的业务表关系。
1)下载地址
http://www.ezdml.com/download_cn.html
2)使用说明
(1)新建模型
(2)命名模型
(3)点击图标,选中模型
(4)导入数据库
(5)配置数据库连接
(6)选择导入的表
(7)建立表关系
第一步:点击选中主表(主键所在的表)
第二步:点击连接按钮
第三步:点击从表,配置连接条件
第四步:效果展示
3)使用技巧
(1)缩略图
(2)热键
按住shift键,用鼠标点击表,进行多选,可实现批量移动
按住ctrl键,用鼠标圈选表,也可进行多选,实现批量移动
2.3 Sqoop安装
2.3.1 下载并解压
1)下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/
2)上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到hadoop102的/opt/software路径中
3)解压sqoop安装包到指定目录,如:
[atguigu@hadoop102 software]$ tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/
4)解压sqoop安装包到指定目录,如:
[atguigu@hadoop102 module]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop
2.3.2 修改配置文件
- 进入到/opt/module/sqoop/conf目录,重命名配置文件
[atguigu@hadoop102 conf]$ mv sqoop-env-template.sh sqoop-env.sh - 修改配置文件
[atguigu@hadoop102 conf]$ vim sqoop-env.sh
增加如下内容
export HADOOP_COMMON_HOME=/opt/module/hadoop-3.1.3
export HADOOP_MAPRED_HOME=/opt/module/hadoop-3.1.3
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.5.7
export ZOOCFGDIR=/opt/module/zookeeper-3.5.7/conf
2.3.3 拷贝JDBC驱动
1)将mysql-connector-java-5.1.48.jar 上传到/opt/software路径
2)进入到/opt/software/路径,拷贝jdbc驱动到sqoop的lib目录下。
[atguigu@hadoop102 software]$ cp mysql-connector-java-5.1.48.jar /opt/module/sqoop/lib/
2.3.4 验证Sqoop
我们可以通过某一个command来验证sqoop配置是否正确:
[atguigu@hadoop102 sqoop]$ bin/sqoop help
出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information
2.3.5 测试Sqoop是否能够成功连接数据库
[atguigu@hadoop102 sqoop]$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 000000
出现如下输出:
information_schema
metastore
mysql
oozie
performance_schema
2.4 同步策略
数据同步策略的类型包括:全量同步、增量同步、新增及变化同步、特殊情况
全量表:存储完整的数据。
增量表:存储新增加的数据。
新增及变化表:存储新增加的数据和变化的数据。
特殊表:只需要存储一次。
2.4.1 全量同步策略
2.4.2 增量同步策略
2.4.3 新增及变化策略
2.4.4 特殊策略
某些特殊的维度表,可不必遵循上述同步策略。
1)客观世界维度
没变化的客观世界的维度(比如性别,地区,民族,政治成分,鞋子尺码)可以只存一份固定值。
2)日期维度
日期维度可以一次性导入一年或若干年的数据。
2.5 业务数据导入HDFS
2.5.1 分析表同步策略
在生产环境,个别小公司,为了简单处理,所有表全量导入。
中大型公司,由于数据量比较大,还是严格按照同步策略导入数据。
2.5.2 脚本编写
1)在/home/atguigu/bin目录下创建
[atguigu@hadoop102 bin]$ vim mysql_to_hdfs.sh
添加如下内容:
#! /bin/bash
APP=gmall
sqoop=/opt/module/sqoop/bin/sqoop
if [ -n “$2” ] ;then
do_date=$2
else
do_date=date -d '-1 day' +%F
fi
import_data(){
KaTeX parse error: Undefined control sequence: \ at position 14: sqoop import \̲ ̲--connect jdbc:…APP
–username root
–password 000000
–target-dir /origin_data/$APP/db/
1
/
1/
1/do_date
–delete-target-dir
–query “$2 and $CONDITIONS”
–num-mappers 1
–fields-terminated-by ‘\t’
–compress
–compression-codec lzop
–null-string ‘\N’
–null-non-string ‘\N’
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /origin_data/$APP/db/
1
/
1/
1/do_date
}
import_order_info(){
import_data order_info “select
id,
final_total_amount,
order_status,
user_id,
out_trade_no,
create_time,
operate_time,
province_id,
benefit_reduce_amount,
original_total_amount,
feight_fee
from order_info
where (date_format(create_time,’%Y-%m-%d’)=‘
d
o
d
a
t
e
′
o
r
d
a
t
e
f
o
r
m
a
t
(
o
p
e
r
a
t
e
t
i
m
e
,
′
do_date' or date_format(operate_time,'%Y-%m-%d')='
dodate′ordateformat(operatetime,′do_date’)”
}
import_coupon_use(){
import_data coupon_use “select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time
from coupon_use
where (date_format(get_time,’%Y-%m-%d’)=‘
d
o
d
a
t
e
′
o
r
d
a
t
e
f
o
r
m
a
t
(
u
s
i
n
g
t
i
m
e
,
′
do_date' or date_format(using_time,'%Y-%m-%d')='
dodate′ordateformat(usingtime,′do_date’
or date_format(used_time,’%Y-%m-%d’)=’$do_date’)”
}
import_order_status_log(){
import_data order_status_log “select
id,
order_id,
order_status,
operate_time
from order_status_log
where date_format(operate_time,’%Y-%m-%d’)=’$do_date’”
}
import_activity_order(){
import_data activity_order “select
id,
activity_id,
order_id,
create_time
from activity_order
where date_format(create_time,’%Y-%m-%d’)=’$do_date’”
}
import_user_info(){
import_data “user_info” “select
id,
name,
birthday,
gender,
email,
user_level,
create_time,
operate_time
from user_info
where (DATE_FORMAT(create_time,’%Y-%m-%d’)=‘
d
o
d
a
t
e
′
o
r
D
A
T
E
F
O
R
M
A
T
(
o
p
e
r
a
t
e
t
i
m
e
,
′
do_date' or DATE_FORMAT(operate_time,'%Y-%m-%d')='
dodate′orDATEFORMAT(operatetime,′do_date’)”
}
import_order_detail(){
import_data order_detail “select
od.id,
order_id,
user_id,
sku_id,
sku_name,
order_price,
sku_num,
od.create_time,
source_type,
source_id
from order_detail od
join order_info oi
on od.order_id=oi.id
where DATE_FORMAT(od.create_time,’%Y-%m-%d’)=’$do_date’”
}
import_payment_info(){
import_data “payment_info” “select
id,
out_trade_no,
order_id,
user_id,
alipay_trade_no,
total_amount,
subject,
payment_type,
payment_time
from payment_info
where DATE_FORMAT(payment_time,’%Y-%m-%d’)=’$do_date’”
}
import_comment_info(){
import_data comment_info “select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
comment_txt,
create_time
from comment_info
where date_format(create_time,’%Y-%m-%d’)=’$do_date’”
}
import_order_refund_info(){
import_data order_refund_info “select
id,
user_id,
order_id,
sku_id,
refund_type,
refund_num,
refund_amount,
refund_reason_type,
create_time
from order_refund_info
where date_format(create_time,’%Y-%m-%d’)=’$do_date’”
}
import_sku_info(){
import_data sku_info “select
id,
spu_id,
price,
sku_name,
sku_desc,
weight,
tm_id,
category3_id,
create_time
from sku_info where 1=1”
}
import_base_category1(){
import_data “base_category1” “select
id,
name
from base_category1 where 1=1”
}
import_base_category2(){
import_data “base_category2” “select
id,
name,
category1_id
from base_category2 where 1=1”
}
import_base_category3(){
import_data “base_category3” “select
id,
name,
category2_id
from base_category3 where 1=1”
}
import_base_province(){
import_data base_province “select
id,
name,
region_id,
area_code,
iso_code
from base_province
where 1=1”
}
import_base_region(){
import_data base_region “select
id,
region_name
from base_region
where 1=1”
}
import_base_trademark(){
import_data base_trademark “select
tm_id,
tm_name
from base_trademark
where 1=1”
}
import_spu_info(){
import_data spu_info “select
id,
spu_name,
category3_id,
tm_id
from spu_info
where 1=1”
}
import_favor_info(){
import_data favor_info “select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from favor_info
where 1=1”
}
import_cart_info(){
import_data cart_info “select
id,
user_id,
sku_id,
cart_price,
sku_num,
sku_name,
create_time,
operate_time,
is_ordered,
order_time,
source_type,
source_id
from cart_info
where 1=1”
}
import_coupon_info(){
import_data coupon_info “select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
spu_id,
tm_id,
category3_id,
limit_num,
operate_time,
expire_time
from coupon_info
where 1=1”
}
import_activity_info(){
import_data activity_info “select
id,
activity_name,
activity_type,
start_time,
end_time,
create_time
from activity_info
where 1=1”
}
import_activity_rule(){
import_data activity_rule “select
id,
activity_id,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from activity_rule
where 1=1”
}
import_base_dic(){
import_data base_dic “select
dic_code,
dic_name,
parent_code,
create_time,
operate_time
from base_dic
where 1=1”
}
case $1 in
“order_info”)
import_order_info
;;
“base_category1”)
import_base_category1
;;
“base_category2”)
import_base_category2
;;
“base_category3”)
import_base_category3
;;
“order_detail”)
import_order_detail
;;
“sku_info”)
import_sku_info
;;
“user_info”)
import_user_info
;;
“payment_info”)
import_payment_info
;;
“base_province”)
import_base_province
;;
“base_region”)
import_base_region
;;
“base_trademark”)
import_base_trademark
;;
“activity_info”)
import_activity_info
;;
“activity_order”)
import_activity_order
;;
“cart_info”)
import_cart_info
;;
“comment_info”)
import_comment_info
;;
“coupon_info”)
import_coupon_info
;;
“coupon_use”)
import_coupon_use
;;
“favor_info”)
import_favor_info
;;
“order_refund_info”)
import_order_refund_info
;;
“order_status_log”)
import_order_status_log
;;
“spu_info”)
import_spu_info
;;
“activity_rule”)
import_activity_rule
;;
“base_dic”)
import_base_dic
;;
“first”)
import_base_category1
import_base_category2
import_base_category3
import_order_info
import_order_detail
import_sku_info
import_user_info
import_payment_info
import_base_province
import_base_region
import_base_trademark
import_activity_info
import_activity_order
import_cart_info
import_comment_info
import_coupon_use
import_coupon_info
import_favor_info
import_order_refund_info
import_order_status_log
import_spu_info
import_activity_rule
import_base_dic
;;
“all”)
import_base_category1
import_base_category2
import_base_category3
import_order_info
import_order_detail
import_sku_info
import_user_info
import_payment_info
import_base_trademark
import_activity_info
import_activity_order
import_cart_info
import_comment_info
import_coupon_use
import_coupon_info
import_favor_info
import_order_refund_info
import_order_status_log
import_spu_info
import_activity_rule
import_base_dic
;;
esac
说明1:
[ -n 变量值 ] 判断变量的值,是否为空
– 变量的值,非空,返回true
– 变量的值,为空,返回false
说明2:
查看date命令的使用,[atguigu@hadoop102 ~]$ date --help
2)修改脚本权限
[atguigu@hadoop102 bin]$ chmod 777 mysql_to_hdfs.sh
3)初次导入
[atguigu@hadoop102 bin]$ mysql_to_hdfs.sh first 2020-06-14
4)每日导入
[atguigu@hadoop102 bin]$ mysql_to_hdfs.sh all 2020-06-15
2.5.3 项目经验
Hive中的Null在底层是以“\N”来存储,而MySQL中的Null在底层就是Null,为了保证数据两端的一致性。在导出数据时采用–input-null-string和–input-null-non-string两个参数。导入数据时采用–null-string和–null-non-string。
第3章 数据环境准备
3.1 Hive安装部署
1)把apache-hive-3.1.2-bin.tar.gz上传到linux的/opt/software目录下
2)解压apache-hive-3.1.2-bin.tar.gz到/opt/module/目录下面
[atguigu@hadoop102 software]$ tar -zxvf /opt/software/apache-hive-3.1.2-bin.tar.gz -C /opt/module/
3)修改apache-hive-3.1.2-bin.tar.gz的名称为hive
[atguigu@hadoop102 software]$ mv /opt/module/apache-hive-3.1.2-bin/ /opt/module/hive
4)修改/etc/profile.d/my_env.sh,添加环境变量
[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh
添加内容
#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=
P
A
T
H
:
PATH:
PATH:HIVE_HOME/bin
重启Xshell对话框或者source一下 /etc/profile.d/my_env.sh文件,使环境变量生效
[atguigu@hadoop102 software]$ source /etc/profile.d/my_env.sh
5)解决日志Jar包冲突,进入/opt/module/hive/lib目录
[atguigu@hadoop102 lib]$ mv log4j-slf4j-impl-2.10.0.jar log4j-slf4j-impl-2.10.0.jar.bak
3.2 Hive元数据配置到MySQL
3.2.1 拷贝驱动
将MySQL的JDBC驱动拷贝到Hive的lib目录下
[atguigu@hadoop102 lib]$ cp /opt/software/mysql-connector-java-5.1.48.jar /opt/module/hive/lib/
3.2.2 配置Metastore到MySQL
在
H
I
V
E
H
O
M
E
/
c
o
n
f
目
录
下
新
建
h
i
v
e
−
s
i
t
e
.
x
m
l
文
件
[
a
t
g
u
i
g
u
@
h
a
d
o
o
p
102
c
o
n
f
]
HIVE_HOME/conf目录下新建hive-site.xml文件 [atguigu@hadoop102 conf]
HIVEHOME/conf目录下新建hive−site.xml文件[atguigu@hadoop102conf] vim hive-site.xml
添加如下内容
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>000000</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
</property>
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
<property>
<name>hive.server2.thrift.bind.host</name>
<value>hadoop102</value>
</property>
<property>
<name>hive.metastore.event.db.notification.api.auth</name>
<value>false</value>
</property>
<property>
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<property>
<name>hive.cli.print.current.db</name>
<value>true</value>
</property>
3.3 启动Hive 3.3.1 初始化元数据库 1)登陆MySQL [atguigu@hadoop102 conf]$ mysql -uroot -p000000 2)新建Hive元数据库 mysql> create database metastore; mysql> quit; 3)初始化Hive元数据库 [atguigu@hadoop102 conf]$ schematool -initSchema -dbType mysql -verbose 3.3.2 启动hive客户端 1)启动Hive客户端 [atguigu@hadoop102 hive]$ bin/hive 2)查看一下数据库 hive (default)> show databases; OK database_name default