PART 01 复平面上的曲线
参数方程与曲线的方向
定义 若平面点集可以表示为由区间 到复平面的连续映射下的像集,则该点集就称为一条平面曲线,该映射称为该曲线的一个参数方程.按照参数的增大或减小的方向可给出曲线的方向,参数增大的方向为曲线的正方向(默认),参数减小的方向为曲线的反方向.
例
1
自点
到点
的有向线段
.


![z(t)=z_{1}+t(z_{2}-z_{1}),t\in [0,1]](https://i-blog.csdnimg.cn/blog_migrate/df38552e7564ad9505c8eca026c9d366.gif)
参数方程的不唯一性
注
同一条平面曲线的参数方程表示不唯一.
例
2
和
都表
![z(\theta )=z_{0}+re^{i\theta },\theta \in [0,2\pi ]](https://i-blog.csdnimg.cn/blog_migrate/9ba9f0587baf5de8d6ab4ee838906f9f.gif)
![z(\theta )=z_{0}+re^{i\theta },\theta =[0,4\pi ]](https://i-blog.csdnimg.cn/blog_migrate/eeaa112af3b57fde729dfe438791d8df.gif)
示以点
为圆心,
𝑟
为半径的圆周.

曲线的切向量
定义
若平面曲线可以表示为可导的参数方程(其导数称为该曲线的
切向量
),则该曲线称为
光滑曲线
.若平面曲线可以表示为除了有限个点以外处处可导的参数方程,则该曲线称为
逐段光滑曲线
.
注
本课程中研究的曲线,都是逐段光滑的.
例
3
求有向线段
的切向量.
![z(t)=z_{1}+t(z_{2}-z_{1}),t\in [0,1]](https://i-blog.csdnimg.cn/blog_migrate/df38552e7564ad9505c8eca026c9d366.gif)
解