第一章 复数 1-3-复平面上的点集

本文介绍了复平面上曲线的参数方程表示及其方向定义,强调了参数选择的重要性,并通过实例探讨了切向量概念,区分了简单曲线与闭曲线。此外,还深入解析了内点、开集、闭集等区域概念,以及单连通域和多连通域的区别。
摘要由CSDN通过智能技术生成

PART 01 复平面上的曲线

参数方程与曲线的方向

定义 若平面点集可以表示为由区间 [a,b]到复平面的连续映射下的像集,则该点集就称为一条平面曲线,该映射称为该曲线的一个参数方程.按照参数的增大或减小的方向可给出曲线的方向,参数增大的方向为曲线的正方向(默认),参数减小的方向为曲线的反方向

1 自点 z_{1} 到点 z_{2} 的有向线段 z(t)=z_{1}+t(z_{2}-z_{1}),t\in [0,1]

参数方程的不唯一性

同一条平面曲线的参数方程表示不唯一.
2 z(\theta )=z_{0}+re^{i\theta },\theta \in [0,2\pi ] z(\theta )=z_{0}+re^{i\theta },\theta =[0,4\pi ] 都表
示以点 z_{0} 为圆心, 𝑟 为半径的圆周.

曲线的切向量

定义 若平面曲线可以表示为可导的参数方程(其导数称为该曲线的 切向量 ),则该曲线称为 光滑曲线 .若平面曲线可以表示为除了有限个点以外处处可导的参数方程,则该曲线称为 逐段光滑曲线
本课程中研究的曲线,都是逐段光滑的.
3 求有向线段 z(t)=z_{1}+t(z_{2}-z_{1}),t\in [0,1] 的切向量.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值