[Jzoj] 3020. 最多的约数

题目大意

给定一个正整数 N N N,对于所有不超过 N N N的正整数,找到包含约数最多的一个数。如果有多个这样的数,那么回答最小的那个

题目解析

先给出一个定义:

W W W的质因数分解为:
W = p 1 W=p_1 W=p1a1 ∗ p 2 *p_2 p2a2 ∗ … ∗ p m *…*p_m pmam ( p 1 … p m 为 素 数 , a 1 … a m ≥ 1 ) (p_1…p_m为素数,a_1…a_m≥1) (p1pma1am1)
W W W ( a 1 + 1 ) ( a 2 + 1 ) … ( a m + 1 ) (a_1+1)(a_2+1)…(a_m+1) (a1+1)(a2+1)(am+1)个约数

所以,可以枚举因数中包含 0 0 0 2 2 2 1 1 1 2 2 2 … … k k k 2 2 2,直至 m ∗ 2 k m∗2^k m2k大于区间的上限 N N N

在这个基础上枚举 3 、 5 、 7 … … 3、5、7…… 357的情况,算出现在已经得到的 m m m的约数个数,
同时与原有的记录进行比较和替换。直至所有的情况都被判定过了

接着,给出如下例子:

12 = 2 2 ∗ 3 12=2^2∗3 12=223
18 = 3 2 ∗ 2 18=3^2*2 18=322

12 12 12 18 18 18的质因数分解 “ “ 模式 ” ” 完全相同,所以它们的约数个数是相同的

但是由于 12 12 12的质因数分解中 2 2 2的指数大于 3 3 3的指数, 18 18 18的质因数分解中 3 3 3的指数大于 2 2 2的指数,所以 12 &lt; 18 12&lt;18 12<18

所以,可以在枚举时进行一个优化,使得枚举到的数字中 2 2 2的指数不小于 3 3 3的指数, 3 3 3的指数不小于 5 5 5的指数 … … …… 这样我们就能够得到质因数分解 “ “ 模式 ” ” 相同的最小数

代码

#include<bits/stdc++.h>
#define L long long
using namespace std;
L n,pi,ans,num;
int p[10005];
bool flag[1000010];
void fun()
{
	for(int i=2;i<=1000000;i++)
	 if(!flag[i])
	 {
	   p[++pi]=i;
	   for(int j=2;j<=1000000/i;j++)
	    flag[j*i]=1;
	 }
}
void dfs(L x,int lev,int t,int s)
{
	if(t>num||(t==num&&x<ans)) ans=x,num=t;
	int j=0,l=1,q;
	L i=x;
	while(j<s)
	{
	  j++,l++;
	  if(n/i<p[lev]) break;
	  q=t*l;
	  i*=p[lev];
	  if(i<=n) dfs(i,lev+1,q,j);
	}
}
int main()
{
	fun();
	cin>>n;
	dfs(1,1,1,30);
	cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值