
基础算法
文章平均质量分 72
OldBibi
这个作者很懒,什么都没留下…
展开
-
最大似然估计的理解(Maximum likelihood estimation)
下午看了半天这个玩意,翻了好几篇文章都感觉很跳跃,最后结合着看终于看明白了。。。赶紧记录下来,省的以后又忘了。。。直观理解先上个wiki里的定义:In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model, given ...原创 2018-12-26 20:56:44 · 7738 阅读 · 0 评论 -
频率派vs贝叶斯派 —— MLE(最大似然估计) vs MAP(最大后验估计)
这两天在重温概率论,发现以前学得挺粗糙的,竟然第一次知道概率论里还有频率派和贝叶斯派之分。。。代表就是MLE和MAP两种概率估计的方法频率派 vs 贝叶斯派在概率估计或者机器学习里的参数估计上,有两个方法,MLE(最大似然估计) 和MAP(最大后验估计),其实代表了概率论里的两个派别,频率派和贝叶斯派往大里说,这两个派别代表了不同的世界观。频率派认为参数是客观存在不会改变的,虽然未知,但...原创 2019-01-24 23:09:06 · 1241 阅读 · 0 评论 -
信息熵,联合熵,条件熵,交叉熵,相对熵+例子
信息熵(Information Entropy)所谓熵也就是信息的不确定性,也就是混乱程度,举个例子便于理解。我们玩一个大转盘,有32个格子,分别标了1-32的数字,格子大小都一样,那么转动以后每个格子被指针指到的概率也是一样的。那么在转盘转动之前我们要下注的话就很纠结了,随便下哪一个都一样。这时候整个系统的信息是非常混乱无序的。我现在转好了让你猜是哪个数字,你会怎么猜?我会问,是1-1...原创 2019-01-25 23:24:21 · 4277 阅读 · 0 评论