线性回归中使用最大似然法的文章蛮多的,这两天看了一些,总觉得有些“跳跃”的地方让人难以理解,现在把整个过程记录下来以便日后查阅,好记性不如烂笔头。。。
关于最大似然法已经写了一篇了: https://blog.csdn.net/weixin_43909872/article/details/85255130
线性回归 :
这里只分析一个independent variable(x轴)的情况,我们有了一系列的(x,y)的点,现在要拟合出一个直线方程:
从上图可以看出,无论我们选取怎样的W值,都不可能完美符合所有的点,肯定会有误差
而这个误差ε表示如下
表达在图形里就是(灵魂画师):