线性回归中最大似然法的理解

本文探讨线性回归中如何运用最大似然法进行模型拟合。当只有一个自变量时,尽管无法找到完全匹配所有数据点的直线,但误差ε遵循正态分布。通过构建似然函数并对其取对数求导,可以找到最优的权重W。最终,作者提供了计算得到的W值及其Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归中使用最大似然法的文章蛮多的,这两天看了一些,总觉得有些“跳跃”的地方让人难以理解,现在把整个过程记录下来以便日后查阅,好记性不如烂笔头。。。
关于最大似然法已经写了一篇了: https://blog.csdn.net/weixin_43909872/article/details/85255130

线性回归 :
这里只分析一个independent variable(x轴)的情况,我们有了一系列的(x,y)的点,现在要拟合出一个直线方程:
y = w

在这里插入图片描述
从上图可以看出,无论我们选取怎样的W值,都不可能完美符合所有的点,肯定会有误差
而这个误差ε表示如下
在这里插入图片描述
表达在图形里就是(灵魂画师):
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值